Lower Triassic (Induan) stromatolites and oolites of the Bernburg Formation revisited – microfacies and palaeoenvironment of lacustrine carbonates in Central Germany

Abstract

We propose a new facies classification scheme of the cyclic lacustrine carbonates of the Bernburg Formation (Lower Triassic, Induan), with a major focus on the microbial biota and grains. Our data are based on a detailed bed-by-bed outcrop study in Central Germany, within a robust (litho)stratigraphic framework. We concentrate on two intervals of the Bernburg Formation: one around the Calvörde/Bernburg Formation boundary (including the HRZ – „Hauptrogensteinzone“), and a second around the ninth cycle near the upper formation boundary. The textural and mineralogical composition of the two endmember components: skeletal stromatolites and oolites, and the macro-, meso-, and microstructural characteristics (supplemented by μ-XRF-data) allow to classify the carbonates into five lithofacies types. They are interpreted with respect to the development of an ideal lacustrine depositional cycle, embedded between a lake level rise and a lake level fall. The microfacies attributes of the microbialites include various lamination types, shrubs, spherulites, and laminated/clotted/fenestral microfabrics. All sedimentologic (macro-, meso, and microscale) and geochemical data of this study indicate nearshore deposition of the carbonates at marginal shoals in a major endorheic lake (playa lake) with high alkalinity and salinity, and strongly fluctuating lake levels, under arid climates. The lacustrine carbonates are associated with maximum lake expansions, and are laterally interfingering with fan deltas, as indicated by abundant clastic grains in the intercalations of the skeletal stromatolites. The Bernburg Formation microbial buildups reflect changes in lake-level, hydrodynamics and grain supply, and therefore offer insights for the paleoenvironmental interpretation of lacustrine microbialites elsewhere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Arp G (1995) Lacustrine bioherms, spring mounds, and marginal carbonates of the Ries-impact-crater (Miocene, Southern Germany). Facies 33:35–90

    Article  Google Scholar 

  2. Arp G, Bielert F, Hoffmann VE, Löffler T (2005) Palaeoenvironmental significance of lacustrine stromatolites of the arnstadt formation (“Steinmergelkeuper”, Upper Triassic, N-Germany). Facies 51:419–441

    Article  Google Scholar 

  3. Augustsson C, Voigt T, Bernhart K, Kreißler M, Gaupp R, Gärtner A, Hofmann M, Linnemann U (2018) Zircon size-age sorting and source-area effect: the German Triassic Buntsandstein Group. Sediment Geol 375:218–231

    Article  Google Scholar 

  4. Bachmann GH, Kozur HW (2004) The Germanic Triassic: correlations with the international chronostratigraphic scale, numerical ages and Milankovitch cyclicity. Hall Jb Geowiss 26:17–62

    Google Scholar 

  5. Batchelor MT, Burne RV, Henry BI, Li F, Paul J (2018) A biofilm and organomineralisation model for the growth and limiting size of ooids. Sci Rep 8:559

    Article  Google Scholar 

  6. Beck R, Andreassen JP (2010) Spherulitic growth of calcium carbonate. Cryst Growth Des 10:2934–2947

    Article  Google Scholar 

  7. Benton MJ (2015) Palaeodiversity and formation counts: redundancy or bias? Palaeontology 58:1003–1029

    Article  Google Scholar 

  8. Benton MJ, Newell AJ (2014) Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Res 25:1308–1337

    Article  Google Scholar 

  9. Bourquin S, Guillocheau F, Peron S (2009) Braided rivers within an arid alluvial plain (example from the Lower Triassic, western German Basin): recognition criteria and expression of stratigraphic cycles. Sedimentology 56:2235–2264

    Article  Google Scholar 

  10. Bouton A, Vennin E, Boulle J, Pace A, Bourillot R, Thomazo C, Brayard A, Desaubliaux G, Goslar T, Yokoyama Y, Dupraz C, Visscher P (2016) Linking the distribution of microbial deposits from the Great Salt Lake (Utah, USA) to tectonic and climatic processes. Biogeosciences 13:5511–5526

    Article  Google Scholar 

  11. Carozzi AV (1962) Cerebroid oolites. Illinois Acad Sci Trans 55:239–249

    Google Scholar 

  12. Carroll AR, Bohacs KM (1999) Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology 27:99–102

    Article  Google Scholar 

  13. Chen ZQ, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383

    Article  Google Scholar 

  14. Chen ZQ, Wang YB, Kershaw S, Luo M, Yang H, Zhao LS, Fang YH, Chen JB, Li Y, Zhang L (2014) Early Triassic stromatolites in a siliciclastic nearshore setting in northern Perth Basin, Western Australia: geobiologic features and implications for post-extinction microbial proliferation. Glob Planet Ch 121:89–100

    Article  Google Scholar 

  15. Chidsey TC, Vanden Berg MD, Eby DE (2015) Petrography and characterization of microbial carbonates and associated facies from modern Great Salt Lake and Uinta Basin’s Eocene Green River Formation in Utah, USA. In: Bosence DWJ, Gibbons KA, Le Heron DP, Morgan WA, Pritchard T, Vining BA (eds) Microbial carbonates in space and time: implications for global exploration and production. London, Spec Publ, Geol Soc, pp 261–286

    Google Scholar 

  16. Christ N, Maerz S, Kutschera E, Kwiecien O, Mutti M (2018) Palaeoenvironmental and diagenetic reconstruction of a closed-lacustrine carbonate system – the challenging marginal setting of the Miocene Ries Crater Lake (Germany). Sedimentology 65:235–262

    Article  Google Scholar 

  17. Chu DL, Tong JN, Song HJ, Benton MJ, Bottjer DJ, Song HY, Tian L (2016) Early Triassic wrinkle structures on land: stressed environments and oases for life. Sci Rep 5:1038e

    Article  Google Scholar 

  18. Clemmensen LB, Oxnevad IEI, De Boer PL (1994) Climatic controls on ancient desert sedimentation, some late Paleozoic and Mesozoic examples from NW Europe and the western interior of the USA. In: de Boer PL, Smith DG (eds) Orbital forcing and cyclic sequences. Blackwell, Oxford, pp 439–457

    Google Scholar 

  19. Della Porta G (2015) Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature. Geol Soc Lond Spec Publ 418:17–68

    Article  Google Scholar 

  20. Eardley AJ (1938) Sediments of the great salt lake. Am Assoc Petrol Geol Bull 22:1305–1411

    Google Scholar 

  21. Eymard I, Bilmes A, Alvarez M, Feo R, Hunger G, Vasconcelos C, Ariztegui D (2019) Growth morphologies and plausible stressors ruling the formation of Late Pleistocene lacustrine carbonate buildups in the Maquinchao Basin (Argentina). Depos Rec 5:498–514

    Article  Google Scholar 

  22. Farias FA, Szatmari P, Bahniuk A, Franca AB (2019) Evaporitic carbonates in the pre salt of Santos Basin – genesis and tectonic implications. Mar Pet Geol 105:251–272

    Article  Google Scholar 

  23. Feng X, Chen ZQ, Bottjer DJ, Wu S, Zhao L, Xu Y, Shi GR, Huang Y, Fang Y, Tu C (2019) Unusual shallow marine matground-adapted benthic biofacies from the Lower Triassic of the northern Paleotethys: Implications for biotic recovery following the end-Permian mass extinction. Earth Sci Rev 189:194–219

    Article  Google Scholar 

  24. Freytet P, Verrecchia EP (1998) Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology 45:535–563

    Article  Google Scholar 

  25. Fritz J, Tagle R, Ashworth L, Schmitt RT, Hofmann A, Luais B, Harris PD, Hoehnel D, Özdemir S, Mohr-Westheide T, Koeberl C (2016) Nondestructive spectroscopic and petrochemical investigations of Paleoarchean spherule layers from the ICDP drill core BARB5, Barberton Mountain Land, South Africa. Meteorit Planet Sci 51:2441–2458

    Article  Google Scholar 

  26. Geluk MC (2005) Stratigraphy and tectonics of Permo-Triassic basins in the Netherlands and surrounding areas. Utrecht University, Utrecht

    Google Scholar 

  27. Geluk MC, Röhling HG (1997) High-resolution sequence stratigraphy of the Lower Triassic ‘Buntsandstein’ in the Netherlands and Northwestern Germany. Geol en Mijnb 76:227–246

    Article  Google Scholar 

  28. Geluk MC, Röhling HG (1999) High resolution sequence stratigraphy of the Lower Triassic Buntsandstein: a new tool for basin analysis. In: Bachmann GH, Lerche I (eds) The Epicontinental Triassic. Zbl Geol und Paläontol, Teil I, pp 727–745

    Google Scholar 

  29. Gierlowski-Kordesch EH (2010) Lacustrine carbonates. In: Tanner LH, Alonso-Zarza AM (eds) Continental Carbonates. Developments in Sedimentology. Elsevier, London

    Google Scholar 

  30. Gomes JP, Bunevich RB, Tedeschi LR, Tucker ME, Whitaker FF (2020) Facies classification and patterns of lacustrine carbonate deposition of the Barra Velha Formation, Santos Basin, Brazilian Pre-salt. Mar Pet Geol 113:104176

    Article  Google Scholar 

  31. Grey K, Awramik SM (2020) Handbook for the study and description of Microbialites. GSWA Bull, Harvey

    Google Scholar 

  32. Grosjean AS, Vennin E, Olivier N, Caravaca G, Thomazo C, Fara E, Escarguel G, Bylund KG, Jenks JF, Stephen DA, Brayard A (2018) Early Triassic environmental dynamics and microbial development during the Smithian-Spathian transition (Lower Weber Canyon, Utah, USA). Sediment Geol 363:136–151

    Article  Google Scholar 

  33. Harris PM, Ellis J, Purkis SJ (2013) Assessing the extent of carbonate deposition in early rift settings. AAPG Bull 97:27–60

    Article  Google Scholar 

  34. Heunisch C, Röhling HG (2016) Early Triassic phytoplankton episodes in the Lower and Middle Buntsandstein of the Central European Basin. Z Dt Ges Geowiss 167:227–248

    Google Scholar 

  35. Hoehnel D, Reimold WU, Altenberger U, Hofmann A, Mohr-Westheide T, Ozdemir S, Koeberl C (2017) Petrographic and Micro-XRF analysis of multiple archean impact-derived spherule layers in drill core CT3 from the northern Barberton Greenstone Belt (South Africa). J Afr Earth Sci 138:264–288

    Article  Google Scholar 

  36. Jones BF, Naftz DL, Spencer RJ, Oviatt CG (2009) Geochemical evolution of great Salt Lake, Utah, USA. Aquat Geochem 15:95–121

    Article  Google Scholar 

  37. Kalkowsky E (1908) Oolith und Stromatolith im norddeutschen Buntsandstein. Z Dtsch Geol Ges 60:68–125

    Google Scholar 

  38. Käsbohrer F, Kuss J (2019) Sedimentpetrographische Untersuchungen der Calvörde-Formation (Unterer Buntsandstein, Untertrias). Hall Jb Geowiss 42:1–24

    Google Scholar 

  39. Kershaw S, Crasquin S, Li Y, Collin PY, Forel MB, Mu X, Baud A, Wang Y, Xie S, Maurer F, Guo L (2012) Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology 10:25–47

    Article  Google Scholar 

  40. Knaust D, Hauschke N (2005) Living conditions in a Lower Triassic playa system of Central Germany: evidence from ichnofauna and body fossils. Hall Jb Geowiss 19:95–108

    Google Scholar 

  41. Kretschmer S, Bachmann GH, Hauschke N (2015) Der Hauptrogenstein (Bernburg-Formation, Unterer Buntsandstein) im Tontagebau Beesenlaublingen (Sachsen-Anhalt). Hall Jb Geowiss 37:95–121

    Google Scholar 

  42. Langbein R (1985) Fluvial-marine transitional depositional environment influencing the diagenesis in the Buntsandstein of Thuringia (German Democratic Republic). In: Mader M (ed) Aspects of Fluvial Sedimentation in the Lower Triassic Buntsandstein of Europe Lecture Notes in Earth Sciences. Springer, London

    Google Scholar 

  43. Lehrmann DJ, Minzoni M, Li X, Yu M, Payne JL, Kelley BM, Schaal EK, Enos P (2012) Lower Triassic oolites of the Nanpanjiang Basin, south China: facies architecture, giant ooids, and diagenesis—Implications for hydrocarbon reservoirs. AAPG Bull 96:1389–1414

    Article  Google Scholar 

  44. Li F, Yan J, Algeo T, Wu X (2013) Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China). Glob Planet Ch 105:102–120

    Article  Google Scholar 

  45. Li M, Ogg JG, Zhang Y, Huang C, Hinnov L, Chen ZQ, Zou Z (2016) Astronomical-cycle scaling of the end-permian extinction and the early triassic epoch of South China and Germany. Earth Planet Sci Lett 441:10–25

    Article  Google Scholar 

  46. Luo M, Chen ZQ, Shi GR, Feng X, Yang H, Fang Y, Li Y (2019) Microbially induced sedimentary structures (MISSs) from the Lower Triassic Kockatea Formation, northern Perth Basin, Western Australia: Palaeoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 519:236–247

    Article  Google Scholar 

  47. Maaß K, Voigt T, Gaupp R (2010) Äolische und fluviatile Sedimentation im Unteren Buntsandstein (Calvörde-Formation) Ost-Thüringens. Beitr Geol Thüringen 17:169–199

    Google Scholar 

  48. Madsen DB, Rhode D, Grayson DK, Broughton JM, Livingston SD, Hunt J, Quade J, Schmitt DN, Shaver MW (2001) Late Quaternary environmental change in the Bonneville basin, western USA. Palaeogeogr Palaeoclimatol Palaeoecol 167:243–271

    Article  Google Scholar 

  49. Martin-Bello L, Arenas C, Andrews JE, Alonso-Zarza AM, Marca A (2019) Lacustrine stromatolites as multi-scale recorders of climate change: Insights from the Miocene Ebro Basin. Palaeogeogr Palaeoclimatol Palaeoecol 530:312–329

    Article  Google Scholar 

  50. Mata SA, Bottjer DJ (2012) Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10:3–24

    Article  Google Scholar 

  51. McKie T (2011) A comparison of modern Dryland depositional systems with the Rotliegend group in the Netherlands. SEPM Spec Publ 98:89–103

    Google Scholar 

  52. Medvedev IP, Kulikov EA, Rabinovich AB (2017) Tidal oscillations in the Caspian Sea. Oceanology 57:360–375

    Article  Google Scholar 

  53. Mercedes-Martin R, Brasier AT, Rogerson MR, Reijmer JJG, Vonhof HB, Pedley HM (2017) A depositional model for spherulitic carbonates associated with alkaline, volcanic lakes. Mar Pet Geol 86:168–191

    Article  Google Scholar 

  54. Molina JM, Ruiz-Ortiz PA, Vera JA (1997) Calcareous tempestites in pelagic facies (Jurassic, Betic Cordilleras, Southern Spain). Sediment Geol 109:95–110

    Article  Google Scholar 

  55. Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures – a new category within the classification of primary sedimentary structures. J Sediment Res 71:649–656

    Article  Google Scholar 

  56. Palermo D, Aigner T, Geluk M, Poeppelreiter M, Pipping K (2008) Reservoir potential of a lacustrine mixed carbonate/siliciclastic gas reservoir: The Lower Triassic Rogenstein in the Netherlands. J Petrol Geol 31:61–96

    Article  Google Scholar 

  57. Parrish JT (1999) Pangaea und das Klima der Trias. In: Hauschke N, Wilde V (eds) Trias eine ganz andere Welt. Pfeil Verlag, München

    Google Scholar 

  58. Paul J (1993) Anatomie und Entwicklung eines permo-triassischen Hochgebietes: die Eichsfeld-Altmark-Schwelle. Geol Jb 131:197–218

    Google Scholar 

  59. Paul J, Klarr K (1988) Feinstratigraphie und Fazies des Unteren und Mittleren Buntsandsteins in der Bohrung Remlingen. Ges Strahlen Umweltforsch GSF-Ber, München

    Google Scholar 

  60. Paul J, Peryt TM (2000) Kalkowsky’s stromatolites revisited (Lower Triassic Buntsandstein, Harz Mountains, Germany). Palaeogeogr Palaeoclimatol Palaeoecol 161:435–459

    Article  Google Scholar 

  61. Pedone VA, Folk RL (1996) Formation of aragonite cement by nannobacteria in the Great Salt Lake, Utah. Geology 24:763–765

    Article  Google Scholar 

  62. Platt NH, Wright VP (1991) Lacustrine carbonates: facies models, facies distributions and hydrocarbon aspects. In: Anadon P, Cabrera L, Kelts K (eds) Lacustrine Facies Analysis. Int Assoc Sediment/Blackwell Scientific, Oxford

    Google Scholar 

  63. Riding R (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geol Croat 61:73–103

    Google Scholar 

  64. Roche A, Vennin E, Bouton A, Olivier N, Wattinne A, Bundeleva I, Deconinck JF, Virgone A, Gaucher EC, Visscher PT (2018) Oligo-Miocene lacustrine microbial and metazoan buildups from the Limagne Basin (French Massif Central). Palaeogeogr Palaeoclimatol Palaeoecol 504:34–59

    Article  Google Scholar 

  65. Röhling HG (1991) A lithostratigraphic subdivision of the Lower Triassic in the northwest German lowlands and the German sector of the North Sea based on gamma-ray and sonic logs. Geol Jb 119:3–24

    Google Scholar 

  66. Röhling HG (2013) Der Buntsandstein im Norddeutschen Becken – regionale Besonderheiten. In: Lepper HG, Röhling HG (eds) Stratigraphie von Deutschland XI. Schriftenreihe Dt Ges Geowiss, Buntsandstein

    Google Scholar 

  67. Roman A (2004) Sequenzstratigraphie und Fazies des Unteren und Mittleren Buntsandsteins im östlichen Teil des Germanischen Beckens (Deutschland, Polen). Dissertation, MLU Halle-Wittenberg

  68. Rupke A, McDonald A (2012) Great Salt Lake brine chemistry database, 1966–2011. Utah Geol Survey Open-File Rep 1:596

    Google Scholar 

  69. Ryder RT, Fouch TD, Elison JH (1976) Early Tertiary sedimentation in the western Uinta Basin, Utah. Geol Soc Am Bull 87:496–512

    Article  Google Scholar 

  70. Sanborn AF, Goodwin JC (1965) Green river formation at raven ridge, Uinta County, Utah. The Mountain Geologist Z 1:109–114

    Google Scholar 

  71. Scholze F, Schneider JW (2016) Die Fischmikrofauna der Rogensteine im Unteren Buntsandstein von Sachsen-Anhalt. Beitr Geol Thüringen 23:61–74

    Google Scholar 

  72. Schomacker ER, Kjemperud AV, Nystuen JP, Jahren JS (2010) Recognition and significance of sharp-based mouth-bar deposits in the Eocene Green River Formation, Uinta Basin, Utah. Sedimentology 57:1069–1087

    Article  Google Scholar 

  73. Stampfli GM, Borel GD (2002) A plate tectonic model for the paleozoic and mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33

    Article  Google Scholar 

  74. Starkova M, Martínek K, Mikuláš R, Rosenau N (2015) Types of soft-sediment deformation structures in a lacustrine Ploužnice member (Stephanian, Gzhelian, Pennsylvanian, Bohemian Massif), their timing, and possible trigger mechanism. Int J Earth Sci (Geol Rundsch) 104:1277–1298

    Article  Google Scholar 

  75. STG (2016) The Stratigraphic Table of Germany. GeoForschungs-Zentrum, Potsdam

    Google Scholar 

  76. Suarez-Gonzalez P, Arenas C, Benito MI, Pomar L (2019a) Interplay between biotic and environmental conditions in pre-salt Messinian microbialites of the western Mediterranean (Upper Miocene, Mallorca, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 533:109242

    Article  Google Scholar 

  77. Suarez-Gonzalez P, Benito MI, Quijada IE, Mas R, Campos-Soto S (2019b) ‘Trapping and binding’: A review of the factors controlling the development of fossil agglutinated microbialites and their distribution in space and time. Earth Sci Rev 194:182–215

    Article  Google Scholar 

  78. Szulc J (2019) Lower Triassic marine Buntsandstein deposits in the Central European Basin. Z Dt Ges Geowiss (German J Geol) 170:311–320

    Google Scholar 

  79. Szurlies M, Bachmann GH, Menning M, Nowaczyk NR, Käding KC (2003) Magnetostratigraphy and high-resolution lithostratigraphy of the Permian-Triassic boundary interval in Central Germany. Earth Planet Sci Lett 212:263–278

    Article  Google Scholar 

  80. Tu CY, Chen ZQ, Retallack GJ, Huang YG, Fang YH (2016) Proliferation of MISS related microbial mats following the end-Permian mass extinction in terrestrial ecosystems: evidence from the Lower Triassic of the Yiyang area, Henan Province, North China. Sediment Geol 333:50–69

    Article  Google Scholar 

  81. Voigt T (2017) Die Ablagerungssysteme des Unteren und Mittleren Buntsandsteins in Thüringen. Geowiss Mitt Thüringen 14:39–95

    Google Scholar 

  82. Walter R (1995) Geologie von Mitteleuropa. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  83. Wehrmann A, Gerdes G, Höfling R (2011) Microbial mats in a lower triassic siliciclastic playa environment (Middle Buntsandstein, North Sea). SEPM Spec Publ 101:177–190

    Google Scholar 

  84. Weidlich O (2007) PTB mass extinction and earliest Triassic recovery overlooked? New evidence for a marine origin of Lower Triassic mixed carbonate–siliciclastic sediments (Rogenstein Member), Germany. Palaeogeogr Palaeoclimatol Palaeoecol 252:259–269

    Article  Google Scholar 

  85. Wiggins WD, Harris PM (1994) Lithofacies, depositional cycles, and stratigraphy of the lower Green River Formation, southwestern Uinta Basin, Utah. Lacustrine Res Deposit Syst SEPM Core Workshop 19:105–143

    Google Scholar 

  86. Wizevich MC, Ahern J, Meyer CA (2019) The Triassic of southwestern Switzerland – Marine or non-marine, that is the question! Palaeogeogr Palaeoclimatol Palaeoecol 514:577–592

    Article  Google Scholar 

  87. Woods AD, Bottjer DJ, Mutti M, Morrison J (1999) Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology 27:645–648

    Article  Google Scholar 

  88. Wright VP, Barnett AJ (2015) An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates. In: Bosence DWJ, Gibbons KA, Le Heron DP, Morgan WA, Pritchard T, Vining BA (eds) Microbial carbonates in space and time: implications for global exploration and production. Geol Soc, London

    Google Scholar 

  89. Yang H, Chen ZQ, Kershaw S, Liao W, Lü E, Huang Y (2019a) Small microbialites from the basal Triassic mudstone (Tieshikou, Jiangxi, South China): Geobiologic features, biogenicity, and paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 519:221–235

    Article  Google Scholar 

  90. Yang W, Zuo R, Wang X, Song Y, Jiang Z, Luo Q, Zhai J, Wang Q, Zhang C, Zhang Z (2019b) Sensitivity of lacustrine stromatolites to Cenozoic tectonic and climatic forcing in the southern Junggar Basin, NW China: New insights from mineralogical, stable and clumped isotope compositions. Palaeogeogr Palaeoclimatol Palaeoecol 514:109–123

    Article  Google Scholar 

  91. Zylberberg L, Meunier FJ, Laurin M (2016) A microanatomical and histological study of the postcranial dermal skeleton of the Devonian actinopterygian Cheirolepis canadensis. Acta Palaeontol Pol 61:363–376

    Google Scholar 

Download references

Acknowledgements

The presented data are based on measured sections and samples, collected during field-trips of both authors. Thin sections of earlier student´s thesis from Daniel Döpke (2008), Niklas Springfeld (2012), and Jakob Brauner (2013) were incorporated. We acknowledge the support of Dr. Heidi Taubner (Marum) for u-XRF-analyses, and of Ralf Bätzel (University of Bremen) for preparation of samples. We thank Dr. Ute Gebhardt (Geological Survey of Saxony-Anhalt) and Dr. Alexander Petrovic (King Abdullah University of Science and Technology) for providing helpful review comments. We thank Prof. Dr. Axel Munnecke (GeoCentre North-Bavaria) for editorial handling of the manuscript.

Author information

Affiliations

Authors

Contributions

FK and JK organized the project and the structure of the paper, and carried out the fieldwork. Thin section analysis, drafting and organizing of all figures was carried out by FK. FK took the lead in writing the manuscript, with input from JK. Both authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Fabian Käsbohrer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Käsbohrer, F., Kuss, J. Lower Triassic (Induan) stromatolites and oolites of the Bernburg Formation revisited – microfacies and palaeoenvironment of lacustrine carbonates in Central Germany. Facies 67, 11 (2021). https://doi.org/10.1007/s10347-020-00611-y

Download citation

Keywords

  • Lacustrine carbonates
  • Lower Triassic
  • Endorheic lake
  • Stromatolites
  • Shrubs
  • Spherulites