Skip to main content

Bioerosion structures in a Late Cretaceous mosasaur from Antarctica

Abstract

Bioerosive structures in the cortical region of a vertebra from a mosasaur fall in the López de Bertodano Formation (Upper Maastrichtian) in Seymour Island (Isla Marambio), Antarctica, are reported. The traces studied are similar but not coincident with the described microborings in other fossil bone remains. The morphology and extension of these bioerosive structures are considered as the result of the activity of endolithic organisms on the original vascular channels of the bone. They are approximately straight, anastomosed, and commonly filled with an opaque mineral and framboidal pyrite. As most of the bone structure is well preserved, only the small portion of the cortical region was exposed to the microorganisms’ activity. This would mean that the mosasaur individual died well earlier than the burial event. This is their first report of this type of bioerosive structures in a mosasaur fall.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Amano K, Little CTS (2005) Miocene whale-fall community from Hokkaido, northern Japan. Palaeogeogr Palaeoclimatol Palaeoecol 215:345–356

    Article  Google Scholar 

  • Chinsamy A, Raath MA (1992) Preparation of fossil bone for histological examination. Palaeontol Afr 29:39–44

    Google Scholar 

  • Danise S, Higgs ND (2015) Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls. Biol Lett 11:20150072

    Article  Google Scholar 

  • Danise S, Cavalazzi B, Dominici S, Westall F, Monechi S, Guioli S (2012) Evidence of microbial activity from a shallow-water whale fall (Voghera, northern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 317–318:13–26

    Article  Google Scholar 

  • Danise S, Twitchett RT, Matts K (2014) Ecological succession of a Jurassic shallow-water ichthyosaur fall. Nat Commun 5:4789. https://doi.org/10.1038/ncomms5789

    Article  Google Scholar 

  • Davis PG (1997) The bioerosion of bird bones. Int J Osteoarchaeol 7:388–401

    Article  Google Scholar 

  • Elliot DH, Askin RA, Kyte FT, Zinsmeister WJ (1994) Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: implications for the KT event. Geology 22:675–678

    Article  Google Scholar 

  • Glaub I (1999) Paleobathymetric reconstructions and fossil microborings. Bull Geol Soc Den 45:143–146

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478

    Google Scholar 

  • Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235

    Article  Google Scholar 

  • Higgs ND, Little CTS, Glover AG (2011) Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and palaeoanthropology. Proc R Soc B Biol Sci 278:9–17

    Article  Google Scholar 

  • Höpner S, Bertling M (2017) Holes in bones: ichnotaxonomy of bone borings. Ichnos 24:259–282

    Article  Google Scholar 

  • Jans MA (2008) Microbial bioerosion of bone: a review. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, pp 397–413

    Chapter  Google Scholar 

  • Kaim A, Kobayashi Y, Echizenya H, Jenkins RG, Tanabe K (2008) Chemosynthesis-based associations on Cretaceous plesiosaurid carcasses. Acta Palaeontol Pol 53:97–104

    Article  Google Scholar 

  • Kiel S (2008) Fossil evidence for micro- and macrofaunal utilization of large nekton falls: examples from early Cenozoic deep-water sediments in Washington State, USA. Palaeogeogr Palaeoclimatol Palaeoecol 267:161–174

    Article  Google Scholar 

  • Liebenau K, Kiel S, Vardeh D, Treude T, Thiel V (2015) A quantitative study of the degradation of whale bone lipids: implications for the preservation of fatty acids in marine sediments. Org Geochem 89–90:23–30

    Article  Google Scholar 

  • Macellari CE (1988) Stratigraphy, sedimentology, and paleoecology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island. Geol Soc Am Mem 169:25–54

    Google Scholar 

  • Martill DM (1989) Fungal borings in neoselachian teeth from the Lower Oxford Clay of Peterborough. Mercian Geol 12:1–4

    Google Scholar 

  • McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26

    Article  Google Scholar 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92–108

    Article  Google Scholar 

  • Olivero EB (2012) Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica. Cretac Res 34:348–366

    Article  Google Scholar 

  • Olivero EB, Ponce JJ, Martinioni DR (2008) Sedimentology and architecture of sharp-based tidal sandstones in the Upper Marambio Group, Maastrichtian of Antarctica. Sediment Geol 210:11–26

    Article  Google Scholar 

  • Pfretzschner HU (2001) Pyrite in fossil bone. N Jb Geol Paläont Abh 220:1–23

    Article  Google Scholar 

  • Roux W (1887) Über eine im Knochen lebende Gruppe von Fadenpilzen (Mycelites ossifragus). Z Wiss Zool Abt A 45:227–254

    Google Scholar 

  • Schoepfer SD, Tobin TS, Witts JD, Newton RJ (2017) Intermittent euxinia in the high-latitude James Ross Basin during the latest Cretaceous and earliest Paleocene. Palaeogeogr Palaeoclimatol Palaeoecol 477:40–54

    Article  Google Scholar 

  • Shapiro RS, Spangler E (2009) Bacterial fossil record in whale-falls: petrographic evidence of microbial sulfate reduction. Palaeogeogr Palaeoclimatol Palaeoecol 274:196–203

    Article  Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol 41:311–354

    Google Scholar 

  • Trueman CN, Martill DM (2002) The long-term survival of bone: the role of bioerosion. Archaeometry 44:371–382

    Article  Google Scholar 

  • Turner-Walker G, Jans M (2008) Reconstructing taphonomic histories using histological analysis. Palaeogeogr Palaeoclimatol Palaeoecol 266:227–235

    Article  Google Scholar 

  • Wedl C (1864) Üeber einen im Zahnbein und Knochen keimenden Pilz. Sber Kais Akad Wiss Wein, Math-nat CL, Abt 1(50):171–193

    Google Scholar 

  • Wisshak M, Tapanila L (eds) (2008) Current developments in bioerosion. Springer, Berlin

    Google Scholar 

  • Zinsmeister WJ (1998) Discovery of fish mortality horizon at the KT boundary on Seymour Island: re-evaluation of events at the end of the Cretaceous. J Paleontol 72:556–571

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Tunik and M. Fernández for their assistance, the IAA (Instituto Antártico Argentino) and Fuerza Aérea Argentina for support in the field, M. Reguero for allowing the study of the material. This research was financially supported by grants from Agencia de Promoción Científica y Tecnológica (ANCyT) (PICT 2016-1039), Universidad Nacional de Río Negro PI UNRN 40-A-585, PI UNRN 40-A-660 and Programa de Incentivos de la Universidad Nacional de La Plata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianella Talevi.

Additional information

This article is part of a Topical Collection in Facies on Bioerosion: An interdisciplinary approach, guest edited by Max Wisshak et al.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Talevi, M., Brezina, S. Bioerosion structures in a Late Cretaceous mosasaur from Antarctica. Facies 65, 5 (2019). https://doi.org/10.1007/s10347-018-0551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-018-0551-2

Keywords

  • Bioerosive structures
  • Marine reptile
  • Cretaceous
  • Antarctica