Abstract
Recurrent microbialite proliferations during the Early Triassic are usually explained by ecological relaxation and abnormal oceanic conditions. Most Early Triassic microbialites are described as single or multiple lithological units without detailed ecological information about lateral and coeval fossiliferous deposits. Exposed rocks along Workman Wash in the Hurricane Cliffs (southwestern Utah, USA) provide an opportunity to reconstruct the spatial relationships of late Smithian microbialites with adjacent and contemporaneous fossiliferous sediments. Microbialites deposited in an intertidal to subtidal interior platform are intercalated between inner tidal flat dolosiltstones and subtidal bioturbated fossiliferous limestones. Facies variations along these fossiliferous deposits and microbialites can be traced laterally over a few hundreds of meters. Preserved organisms reflect a moderately diversified assemblage, contemporaneous to the microbialite formation. The presence of such a fauna, including some stenohaline organisms (echinoderms), indicates that the development of these late Smithian microbial deposits occurred in normal-marine waters as a simple facies belt subject to relative sea-level changes. Based on this case study, the proliferation of microbialites cannot be considered as direct evidence for presumed harsh environmental conditions.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
Abdolmaleki J, Tavakoli V (2016) Anachronistic facies in the Early Triassic successions of the Persian Gulf and its palaeoenvironmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 446:213–224
Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ (2011) Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 308:1–11
Atudorei NV (1999) Constraints on the Upper Permian to Upper Triassic marine carbon isotope curve. Case studies from the Tethys. Ph.D. thesis, University of Lausanne, pp 1–155
Bagherpour B, Bucher H, Baud A, Brosse M, Vennemann T, Martini R, Guodun K (2017) Onset, development, and cessation of basal Early Triassic microbialites (BETM) in the Nanpanjiang pull-apart Basin, South China Block. Gondwana Res 44:178–204
Batten RL, Stokes WL (1986) Early Triassic gastropods from the Sinbad Member of the Moenkopi Formation, San Rafael Swell, Utah. Am Mus Novit 2864:1–33
Baud A (2007) Lower Triassic microbialites versus skeletal carbonates, a competition on the Gondwana Margin. N M Mus Nat Hist Sci Bull 41:23
Baud A (2013) The Smithian (Early Triassic) red ammonoid limestone of Oman, refuge for sponge-microbial build-ups during recovery phase. GSA Annual Meeting in Denver
Baud A, Cirilli S, Marcoux J (1997) Biotic response to mass extinction: the lowermost Triassic microbialites. Facies 36:238–242
Baud A, Richoz S, Pruss S (2007) The lower Triassic anachronistic carbonate facies in space and time. Glob Planet Chang 55:81–89
Baud A, Goudemand N, Nützel A, Brosse M, Frisk Å, Meier M, Bucher H (2015) Carbonate factory in the aftermath of the end-Permian mass extinction: griesbachian crinoidal limestones from Oman. Ber Inst Erdwiss K-F-Univ Graz 21:31
Baud A, Friesenbichler E, Richoz S, Krystyn L, Sahakyan L (2017) Induan (Early Triassic) giant sponge-microbial build-ups in Armenia. In: 5th IGCP 630 international conference and field workshop, Erevan 8–14 October 2017 program and abstract, p 13
Beatty TW, Zonneveld JP, Henderson CM (2008) Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: a case for a shallow-marine habitable zone. Geology 36(10):771–774
Biernat G, Emig CC (1993) Anatomical distinctions of the Mesozoic lingulide brachiopods. Acta Palaeontol Pol 38:1–20
Blakey RC (1974) Stratigraphic and depositional analysis of the Moenkopi Formation, southeastern Utah. Utah Geol Miner Surv Bull 104:1–81
Blakey RC (1977) Petroliferous lithosomes in the Moenkopi Formation, southern Utah. Utah Geol 4:67–84
Blakey RC (1979) Oil impregnated carbonate rocks of the Timpoweap Member Moenkopi Formation, Hurricane Cliffs area, Utah and Arizona. Utah Geol 6:45–54
Bottjer DJ, Clapham ME, Fraiser ML, Powers CM (2008) Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. GSA Today 18:4–10
Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009) Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:1118–1121
Brayard A, Vennin E, Olivier N, Bylund KG, Jenks J, Stephen DA, Bucher H, Hofmann R, Goudemand N, Escarguel G (2011) Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat Geosci 4:693–697
Brayard A, Bylund KG, Jenks JF, Stephen DA, Olivier N, Escarguel G, Fara E, Vennin E (2013) Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlations and basinal paleogeography. Swiss J Palaeontol 132:141–219
Brayard A, Meier M, Escarguel G, Fara E, Nützel A, Olivier N, Bylund KG, Jenks JF, Stephen DA, Hautmann M, Vennin E, Bucher H (2015) Early Triassic Gulliver gastropods: spatio-temporal distribution and significance for the biotic recovery after the end-Permian mass extinction. Earth Sci Rev 146:31–64
Brayard A, Krumenacker LJ, Botting JP, Jenks JF, Bylund KG, Fara E, Vennin E, Olivier N, Goudemand N, Saucède T, Charbonnier S, Romano C, Doguzhaeva L, Thuy B, Hautmann M, Stephen DA, Thomazo C, Escarguel G (2017) Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Sci Adv 3:e1602159
Brosse M, Bucher H, Baud A, Hagdorn H, Hautmann M, Nützel A, Ware D, Frisk Å, Goudemand N (2018) New data from Oman indicate benthic high biomass productivity coupled with low taxonomic diversity in the aftermath of the Permian–Triassic Boundary mass extinction. Lethaia (in press)
Brühwiler T, Brayard A, Bucher H, Guodun K (2008) Griesbachian and Dienerian (Early Triassic) ammonoid faunas from northwestern Guangxi and southern Guizhou (south China). Palaeontology 51:1151–1180
Buatois LA, Mángano MG (2011) Ichnology: organism-substrate interactions in space and time. Cambridge University Press, Cambridge
Caravaca G, Brayard A, Vennin E, Guiraud M, Grosjean AS, Olivier N, Thomazo C, Fara E, Escarguel G, Bylund K, Jenks J (2017) Controlling factors for differential subsidence in the Sonoma Foreland Basin (Early Triassic, western USA). Geol Mag. https://doi.org/10.1017/S0016756817000164 (in press)
Chen ZQ, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383
Collin PY, Kershaw S, Tribovillard N, Forel MB, Crasquin S (2015) Geochemistry of post-extinction microbialites as a powerful tool to assess the oxygenation of shallow-marine water in the immediate aftermath of the end-Permian mass extinction. Int J Earth Sci 104:1025–1037
Collinson JW, Kendall CGSC, Marcantel JB (1976) Permian–Triassic boundary in eastern Nevada and west-central Utah. Bull Geol Soc Am 87:821–824
Dean JS (1981) Carbonate petrology and depositional environments of the Sinbad Limestone Member of the Moenkopi Formation in the Teasdale Dome Area, Wayne and Garfield Counties, Utah. Brigham Young Univ Geol Stud 28:19–51
Dickinson WR (2006) Geotectonic evolution of the Great Basin. Geosphere 2:353–368
Dickinson WR (2013) Phanerozoic palinspastic reconstructions of Great Basin geotectonics (Nevada-Utah, USA). Geosphere 9:1384–1396
Erwin DH (1996) Understanding biotic recoveries: extinction, survival, and preservation during the end-Permian mass extinction. Evolutionary paleobiology. University of Chicago Press, Chicago, pp 398–418
Erwin DH (2001) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci USA 98:5399–5403
Ezaki Y, Liu J, Nagano T, Adachi N (2008) Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze Platform: initiation and cessation of a microbial regime. Palaios 23:356–369
Ezaki Y, Liu JB, Adachi N (2012) Lower Triassic stromatolites in Luodian County, Guizhou Province, South China: evidence for the protracted devastation of the marine environments. Geobiology 10:48–59
Fang Y, Chen ZQ, Kershaw S, Li Y, Luo M (2017) An Early Triassic (Smithian) stromatolite associated with giant ooid banks from Lichuan (Hubei Province), South China: Environment and controls on its formation. Palaeogeogr Palaeoclimatol Palaeoecol 486:108–122
Flügel E (2002) Triassic reef patterns. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Special Publication, vol 72. SEPM Press, Tulsa, Oklahoma, pp 391–463
Forel MB, Crasquin S, Kershaw S, Collin PY (2013) In the aftermath of the end-Permian extinction: the microbialite refuge? Terra Nova 25:137–143
Foster WJ, Twitchett RJ (2014) Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nat Geosci 7:233–238
Foster WJ, Danise S, Sedlacek A, Price GD, Hips K, Twitchett RJ (2015) Environmental controls on the post-Permian recovery of benthic, tropical marine ecosystems in western Palaeotethys (Aggtelek Karst, Hungary). Palaeogeogr Palaeoclimatol Palaeoecol 440:374–394
Foster WJ, Danise S, Price GD, Twitchett RJ (2017) Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy. PLoS One 12:e0172321
Frey RW, Pemberton SG (1984) Trace fossil facies models. In: Walker RG (ed) Facies models, 2nd edn. Geoscience Canada, reprint series, vol 1, no 41, Ontario, pp 223–237
Frey RW, Pemberton SG (1985) Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bull Can Pet Geol 33:72–115
Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 13:183–207
Friesenbichler E, Richoz S, Baud A, Krystyn L, Sahakyan L, Vardanyan S, Peckmann J, Reitner J, Heindel K (2018) Sponge-microbial build-ups from the lowermost Triassic Chanakhchi section in southern Armenia: microfacies and stable carbon isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 90:653–672
Fu W, Jiang DY, Montañez IP, Meyers SR, Motani R, Tintori A (2016) Eccentricity and obliquity paced carbon cycling in the Early Triassic and implications for post-extinction ecosystem recovery. Sci Rep 6:27793
Galfetti T, Bucher H, Ovtcharova M, Schaltegger U, Brayard A, Brühwiler T, Goudemand N, Weissert H, Hochuli PA, Cordey F, Guodun K (2007) Timing of the Early Triassic carbon cycle perturbations inferred from new U–Pb ages and ammonoid biochronozones. Earth Planet Sci Lett 258:593–604
Gall JC (1990) Les voiles microbiens. Leur contribution a la fossilisation des organismes au corps mou. Lethaia 23:21–28
Goodspeed TH, Lucas SG (2007) Stratigraphy, sedimentology, and sequence stratigraphy of the Lower Triassic Sinbad Formation, San Rafael Swell, Utah. N M Mus Nat Hist Sci Bull 40:91–101
Grasby SE, Beauchamp B, Embry A, Sanei H (2013) Recurrent Early Triassic ocean anoxia. Geology 4:175–178
Gregory HE (1950) Geology and geography of the Zion [National] Park region, Utah and Arizona. US Geol Surv Prof Pap 220:1–200
Grice K, Cao C, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin Y (2005) Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307:706–709
Grosjean AS, Vennin E, Olivier N, Caravaca G, Thomazo C, Fara E, Escarguel G, Bylund KG, Jenks JF, Stephen DA, Brayard A (2018) Early Triassic environmental dynamics and microbial development during the Smithian-Spathian transition (Lower Weber Canyon, Utah, USA). Sediment Geol 363:136–151
Haig DW, Martin SK, Mory AJ, McLoughlin S, Backhouse J, Berrell RW, Kear BP, Hall R, Foster CB, Shi GR, Bevan JC (2015) Early Triassic (early Olenekian) life in the interior of East Gondwana: mixed marine–terrestrial biota from the Kockatea Shale, Western Australia. Palaeogeogr Palaeoclimatol Palaeoecol 417:511–533
Hakes WG (1976) Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, northeast Kansas. Univ Kans Paleontol Contrib Artic 63:46
Hautmann M, Bucher H, Brühwiler T, Goudemand N, Kaim A, Nützel A (2011) An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis. Geobios 44:71–85
Hautmann M, Smith AB, McGowan AJ, Bucher H (2013) Bivalves from the Olenekian (Early Triassic) of south-western Utah: systematics and evolutionary significance. J Syst Palaeontol 11:263–293
Hautmann M, Bagherpour B, Brosse M, Frisk Å, Hofmann R, Baud A, Nützel A, Goudemand N, Bucher H (2015) Competition in slow motion: the unusual case of benthic marine communities in the wake of the end-Permian mass extinction. Palaeontology 58:871–901
Hayden JM (2004) Geologic map of the divide quadrangle, Washington County, Utah, Utah geological survey map 197, scale 1:24,000
Hofmann R, Goudemand N, Wasmer M, Bucher H, Hautmann M (2011) New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 310:216–226
Hofmann R, Hautmann M, Bucher H (2013a) A new paleoecological look at the Dinwoody Formation (Lower Triassic, western USA): intrinsic versus extrinsic controls on ecosystem recovery after the end-Permian mass extinction. J Paleontol 87:854–880
Hofmann R, Hautmann M, Wasmer M, Bucher H (2013b) Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery. Acta Palaeontol Pol 58:149–173
Hofmann R, Hautmann M, Brayard A, Nützel A, Bylund KG, Jenks JF, Vennin E, Olivier N, Bucher H (2014) Recovery of benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa. Palaeontology 57:547–589
Holmer LE, Popov LE, Klishevich I, Ghobadi Pour M (2016) Reassessment of the early Triassic lingulid brachiopod ‘Lingula’ borealis Bittner, 1899 and related problems of lingulid taxonomy. GFF. https://doi.org/10.1080/11035897.2016.1149216
Jattiot R, Bucher H, Brayard A, Monnet C, Jenks JF, Hautmann M (2016) Revision of the genus Anasibirites Mojsisovics (Ammonoidea): an iconic and cosmopolitan taxon of the late Smithian (Early Triassic) extinction. Pap Palaeontol 2:155–188
Jattiot R, Bucher H, Brayard A, Brosse M, Jenks J, Bylund KG (2017) Smithian ammonoid faunas from northeastern Nevada: implications for Early Triassic biostratigraphy and correlation within the western USA basin. Palaeontogr Abt A 309:1–89
Kaim A, Nützel A, Bucher H, Brühwiler T, Goudemand N (2010) Early Triassic (Late Griesbachian) gastropods from South China (Shanggan, Guangxi). Swiss J Geosci 103:121–128
Kershaw S (2017) Palaeogeographic variation in the Permian–Triassic boundary microbialites: a discussion of microbial and ocean processes after the end-Permian mass extinction. J Palaeogeogr 6:97–107
Kershaw S, Zhang T, Lan G (1999) A ?microbialite carbonate crust at the Permian–Triassic boundary in South China, and its palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 146:1–18
Kershaw S, Crasquin S, Li Y, Collin PY, Forel MB, Mu X, Baud A, Wang Y, Xie S, Maurer F, Guo L (2012) Microbialites and global environmental change across the Permian–Triassic boundary: a synthesis. Geobiology 10:25–47
Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW (2007) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256:295–313
Krystyn L, Richoz S, Baud A, Twitchett RJ (2003) A unique Permian-Triassic boundary section from the neotethyan Hawasina basin, Central Oman Mountains. Palaeogeogr Palaeoclimatol Palaeoecol 191:329–334
Lehrmann DJ (1999) Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, south China. Geology 27:359–362
Lehrmann DJ, Wan Y, Wei J, Yu Y, Xiao J (2001) Lower Triassic peritidal cyclic limestone: an example of anachronistic carbonate facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou province, South China. Palaeogeogr Palaeoclimatol Palaeoecol 173:103–123
Lehrmann DJ, Ramezani J, Bowring SA, Martin MW, Montgomery P, Enos P, Payne JL, Orchard MJ, Wang H, Wei J (2006) Timing of recovery from the end-Permian extinction: geochronologic and biostratigraphic constraints from south China. Geology 34:1053–1056
Lehrmann DJ, Bentz JM, Wood T, Goers A, Dhillon R, Akin S, Li X, Payne JL, Kelley BM, Meyer KM, Schaal EK, Suarez MB, Yu M, Qin Y, Li R, Minzoni M, Henderson CM (2015) Environmental controls on the genesis of marine microbialites and dissolution surface associated with the end-Permian mass extinction: new sections and observations from the Nanpanjiang Basin, South China. Palaios 30:529–552
Lucas SG, Krainer K, Milner AR (2007) The type section and age of the Timpoweap Member and stratigraphic nomenclature of the Triassic Moenkopi Group in Southwestern Utah. N M Mus Nat Hist Sci Bull 40:109–117
MacEachern JA, Pemberton SG, Gingras MK, Bann KL (2007) The ichnofacies paradigm: a fifty-year retrospective. In: Miller III W (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 52–77
Marenco PJ, Griffin JM, Fraiser ML, Clapham ME (2012) Paleoecology and geochemistry of Early Triassic (Spathian) microbial mounds and implications for anoxia following the end-Permian mass extinction. Geology 40:715–718
Mary M, Woods AD (2008) Stromatolites of the Lower Triassic Union Wash Formation, CA: evidence for continued post-extinction environmental stress in western North America through the Spathian. Palaeogeogr Palaeoclimatol Palaeoecol 261:78–86
Mata SA, Bottjer DJ (2011) Origin of Lower Triassic microbialites in mixed carbonate-siliciclastic successions: ichnology, applied stratigraphy, and the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 300:158–178
Mata SA, Bottjer DJ (2012) Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10:3–24
McGowan AJ, Smith AB, Taylor PD (2009) Faunal diversity, heterogeneity and body size in the Early Triassic: testing post-extinction paradigms in the Virgin Limestone of Utah, USA. Aust J Earth Sci 56:859–872
Nielson RL (1991) Petrology, sedimentology and stratigraphic implications of the Rock Canyon Conglomerate, southwestern Utah. Utah Geol Surv Misc Publ 91(7):65
Nielson RL, Johnson JL (1979) The Timpoweap Member of the Moenkopi Formation. Timpoweap Canyon Utah Utah Geol 6:17–27
Olivier N, Brayard A, Fara E, Bylund KG, Jenks JF, Vennin E, Stephen DA, Escarguel G (2014) Smithian shoreline migrations and depositional settings in Timpoweap Canyon (Early Triassic, Utah, USA). Geol Mag 151:938–955
Olivier N, Brayard A, Vennin E, Escarguel G, Fara E, Bylund KG, Jenks JF, Caravaca G, Stephen DA (2016) Evolution of depositional settings in the Torrey area during the Smithian (Early Triassic, Utah, USA) and their significance for the biotic recovery. Geol J 51:600–626
Paull RA, Paull RK (1993) Interpretation of Early Triassic nonmarine–marine relations, Utah, U.S.A. N M Mus Nat Hist Sci Bull 3:403–409
Paull RK, Paull RA (1994) Shallow-marine sedimentary facies in the earliest Triassic (Griesbachian) Cordilleran miogeocline, USA. Sediment Geol 93:181–191
Paull RK, Paull RA (1997) Transgressive conodont faunas of the early Triassic: an opportunity for correlation in the Tethys and the circum-Pacific. In: Dickins JM, Zunyi Y, Hongfu Y, Lucas SG, Acharyya SK (eds) Late Palaeozoic and Early Mesozoic circum-Pacific events and their global correlation. World and regional geology, vol 10. Cambridge University Press, New York, pp 158–167
Payne JL, Clapham ME (2012) End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu Rev Earth Planet Sci 40:89–111
Payne JL, Lehrmann DJ, Wei J, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509
Payne JL, Lehrmann DJ, Wei J, Knoll AH (2006) The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21:63–85
Payne JL, Turchyn AV, Paytan A, DePaolo DJ, Lehrmann DJ, Yu M, Wei J (2010) Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci 107:8543–8548
Peng Y, Shi GR, Gao Y, He W, Shen S (2007) How and why did the Lingulidae (Brachiopoda) not only survive the end-Permian mass extinction but also thrive in its aftermath? Palaeogeogr Palaeoclimatol Palaeoecol 252:118–131
Pietsch C, Bottjer DJ (2014) The importance of oxygen for the disparate recovery patterns of the benthic macrofauna in the Early Triassic. Earth Sci Rev 137:65–84
Pietsch C, Mata SA, Bottjer DJ (2014) High temperature and low oxygen perturbations drive contrasting benthic recovery dynamics following the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 399:98–113
Pörtner HO, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from earth history to global change. J Geophys Res Oceans 110:C09S10. https://doi.org/10.1029/2004JC002561
Posenato R, Holmer LE, Prinoth H (2014) Adaptive strategies and environmental significance of lingulid brachiopods across the late Permian extinction. Palaeogeogr Palaeoclimatol Palaeoecol 399:373–384
Pruss SB, Bottjer DJ (2004) Late Early Triassic microbial reefs on the western United States: a description and model for their deposition in the aftermath of the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 211:127–137
Pruss SB, Bottjer DJ, Corsetti FA, Baud A (2006) A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States. Earth Sci Rev 78:193–206
Reeside JB Jr, Bassler H (1922) Stratigraphic sections in southwestern Utah and northwestern Arizona. US Geol Surv Prof Pap 129(D):53–77
Ritter S, Osborn C, Goodrich C (2013) Sedimentology and reservoir characteristics of the Lower Triassic (Smithian) Sinbad Limestone Member of the Moenkopi Formation, San Rafael Swell, Utah. In: Morris TH, Ressetar R (eds) The San Rafael Swell and Henry Mountains Basin—geologic centerpiece of Utah, vol 42. Utah Geological Association Publications, Salt Lake City, pp 199–222
Rodland DL, Bottjer DJ (2001) Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios 16:95–101
Schubert JK, Bottjer DJ (1992) Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20:883–886
Schubert JK, Bottjer DJ (1995) Aftermath of the Permian–Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the western USA. Palaeogeogr Palaeoclimatol Palaeoecol 116:1–39
Seilacher A (1963) Lebensspuren und Salinitätsfazies. Fortschr Geol Rheinl Westfal 10:81–94
Song H, Wignall PB, Chu D, Tong J, Sun Y, Song H, He W, Tian L (2014) Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Sci Rep 4:4132
Stewart JH, Poole FG, Wilson RF (1972) Stratigraphy and origin of the Triassic Moenkopi Formation and related strata in the Colorado Plateau region. US Geol Surv Prof Pap 691:195
Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–370
Szmuc EJ, Osgood RG, Meinke DW (1977) Synonymy of the ichnogenus Lingulichnites Szmuc, E.J., Osgood, R.G., and Meinke, D.W. 1976, with Lingulichnus Hakes, 1976. Lethaia 10:106
Tang H, Kershaw S, Liu H, Tan X, Li F, Hu G, Huang C, Wang L, Lian C, Li L, Yang X (2017) Permian–Triassic boundary microbialites (PTBMs) in southwest China: implications for paleoenvironment reconstruction. Facies 63:2
Thomazo C, Vennin E, Brayard A, Bour I, Mathieu O, Elmeknassi S, Olivier N, Escarguel G, Bylund KG, Jenks J, Stephen DA, Fara E (2016) A diagenetic control on the Early Triassic Smithian–Spathian carbon isotopic excursions recorded in the marine settings of the Thaynes Group (Utah, USA). Geobiology 14:220–236. https://doi.org/10.1111/gbi.12174
Tomescu AM, Klymiuk AA, Matsunaga KK, Bippus AC, Shelton GW (2016) Microbes and the fossil record: selected topics in paleomicrobiology. Their world: a diversity of microbial environments. Springer International Publishing, Switzerland, pp 69–169
Twitchett RJ, Krystyn L, Baud A, Wheeley JR, Richoz S (2004) Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology 32:805–808
Vennin E, Olivier N, Brayard A, Bour I, Thomazo C, Escarguel G, Fara E, Bylund KG, Jenks JF, Stephen DA, Hofmann R (2015) Microbial deposits in the aftermath of the end-Permian mass extinction: a diverging case from the Mineral Mountains (Utah, USA). Sedimentology 62:753–792
Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155
Woods AD (2014) Assessing Early Triassic paleoceanographic conditions via unusual sedimentary fabrics and features. Earth Sci Rev 137:6–18
Yang H, Chen ZQ, Wang Y, Tong J, Song H, Chen J (2011) Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China. Palaeogeogr Palaeoclimatol Palaeoecol 308:111–128
Yang H, Chen ZQ, Wang Y, Ou W, Liao W, Mei X (2015) Palaeoecology of microconchids from microbialites near the Permian–Triassic boundary in South China. Lethaia 48:497–508
Zonneveld JP, Pemberton SG (2003) Ichnotaxonomy and behavioral implications of lingulide-derived trace fossils from the Lower and Middle Triassic of Western Canada. Ichnos 10:25–39
Zonneveld JP, Beatty TW, Pemberton SG (2007) Lingulide brachiopods and the trace fossil Lingulichnus from the Triassic of western Canada: implications for faunal recovery after the end-Permian mass extinction. Palaios 22:74–97
Acknowledgements
This work is a contribution to the ANR Project AFTER (ANR-13-JS06-0001-01). The CNRS INSU Interrvie, and the French ANR @RAction Grant (Project EvoDevOdonto) also supported this study. D.A. Stephen is grateful for the ongoing financial support of the College of Science and Health at Utah Valley University. Michael Hautmann is thanked for his assistance in bivalve taxonomy and ecology. Our thanks to Marilyne Imbault for her contribution to the ammonoid determination. The Workman Wash area is located on US public land under the stewardship of the Bureau of Land Management (BLM) of the US Department of the Interior; access to this land is gratefully acknowledged. We would like to thank Wolfgang Kießling and two anonymous reviewers for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Olivier, N., Fara, E., Vennin, E. et al. Late Smithian microbial deposits and their lateral marine fossiliferous limestones (Early Triassic, Hurricane Cliffs, Utah, USA). Facies 64, 13 (2018). https://doi.org/10.1007/s10347-018-0526-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10347-018-0526-3