Skip to main content

New evidence of nearshore Mid-Triassic Zoophycos: morphological and paleoenvironmental characterization

Abstract

Zoophycos is a well-known trace fossil common throughout the Phanerozoic. Paleozoic forms show important differences in morphology and habitat distribution with respect to the Jurassic, Cretaceous, and Cenozoic ones. Therefore, Early–Middle Triassic is considered a crucial time-span for the understanding of the evolution of this trace fossil. So far, Early Triassic Zoophycos is unknown and Middle Triassic forms were recorded only in deposits from Thuringia. The morphology and paleoenvironment of Zoophycos from the middle–upper Muschelkalk of the Iberian Range is herein described. The best-preserved trace fossils occur in a dolomicritic bed Ladinian in age, and are represented by small forms with a subcircular, slightly lobed outline and very little penetration depth. They were deposited in a very shallow, quiet-water environment with transition to supratidal/emerged areas. The low diversity of both trace fossils and skeletal remains point to stressful conditions related to strong salinity variations and/or poor water circulation. A comparison was made with Zoophycos from Anisian deposits of the Muschelkalk in Germany. This showed that both forms are quite simple and penetrate only the shallowest tiers, although they are different in whorl outline and lobe shape. This confirms that, notwithstanding the morphological variability of this group, Zoophycos still maintained a quite simple structure in the Triassic. A shallow-water environment was deduced for both localities, confirming that at least until the Early Jurassic Zoophycos had not definitively migrated toward deep-water areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abbassi N, Shabanian R, Hamede Golparvar R (2015) Environmental impacts on the ichnofossil diversity of the lower part of the Elika Formation (Lower Triassic), Moro Mountain, NW Iran. Iran J Sci Technol 39:273–280

    Google Scholar 

  2. Alpert SP (1977) Trace fossils and the basal Cambrian boundary. In: Crimes TP, Harper JC (eds) Trace fossils. Seel House Press, Liverpool, pp 1–8

    Google Scholar 

  3. Avanzini M, Baucon A (2008) Zoophycos-like structures associated with dinosaur tracks in a tidal-flat environment: Lower Jurassic (Southern Alps, Italy). Stud Trent Sci Nat Acta Geol 83:123–131

    Google Scholar 

  4. Baeza-Carratalá JF, Giannetti A, Tent-Manclús JE, García Joral F (2014) Evaluating taphonomic bias in a storm-disturbed carbonate platform: effects of compositional and environmental factors in Lower Jurassic brachiopod accumulations (Eastern Subbetic Basin, Spain). Palaios 29:55–73

    Article  Google Scholar 

  5. Bellotti P, Valeri P (1976) Tracce di Zoophycos nell’ Ammonitico Rosso superiore del Monte Pellecchia (Monti Lucretili). Boll Serv Geol Ital 97:21–34

    Google Scholar 

  6. Biernat G, Emig CC (1993) Anatomical distinctions of the Mesozoic lingulide brachiopods. Acta Palaeontol Pol 38:1–20

    Google Scholar 

  7. Billings E (1862) New species of fossils from different parts of the Lower, Middle and Upper Silurian rocks of Canada. In: Dawson B (ed) Palaeozoic Fossils. Canada, Geological Survey of Canada, pp 96–168

    Google Scholar 

  8. Bottjer DJ, Droser ML, Jablonski D (1988) Palaeoenvironmental trends in the history of trace fossils. Nature 333:252–255

    Article  Google Scholar 

  9. Broglio Loriga C, Neri C, Posenato R (1980) The Lingula zone of the Scythian (Lower Triassic): stratigrafia e paleoecologia. Ann Univ Ferrar 9:91–130

    Google Scholar 

  10. Bromley RG (1991) Zoophycos: strip mine, refuse dump, cache or sewage farm? Lethaia 24:460–462

    Article  Google Scholar 

  11. Bromley RG, Hanken NM (2003) Structure and function of large, lobed Zoophycos, Pliocene of Rhodes, Greece. Palaeogeogr Palaeoclimatol Palaeoecol 192:79–100

    Article  Google Scholar 

  12. Buatois L, Carmona NB, Curran HA, Netto RG, Mángano MG, Wetzel A (2016) The Mesozoic marine revolution. In: Mángano MG, Buatois LA (eds) The trace-fossil record of major evolutionary events, Volume 2, Mesozoic and Cenozoic. Springer, Heidelberg, pp 19–134

    Chapter  Google Scholar 

  13. De la Horra R, López-Gómez J, Arche A, Escudero-Mozo MJ, Galán-Abellán B, Barrenechea JF, Martín-Chivelet J, Borruel V (2013) The Permian-Triassic rocks of the Eastern Iberian Ranges: a general approach in the context of the first stages of the break-up of Pangea. Pan-European Correlation of the Triassic. In: 10th International Field Workshop

  14. Dorador J, Wetzel A, Rodríguez Tovar FJ (2016) Zoophycos in deep-sea sediments indicates high and seasonal primary productivity: ichnology as a proxy in palaeoceanography during glacial-interglacial variations. Terra Nova 28:323–328

    Article  Google Scholar 

  15. Ehrenberg K (1944) Ergänzende Bemerkungen zu den seinerzeit aus dem Miozän von Burgschleinitz beschriebenen Gangkernen und Bauten dekapoder Krebse. Paläontologische Zeitschrift 23:354–359

    Article  Google Scholar 

  16. Ekdale AA, Lewis DW (1991) The New Zealand Zoophycos revisited: morphology, ethology and paleoecology. Ichnos 1:183–194

    Article  Google Scholar 

  17. Escudero-Mozo MJ, Márquez-Aliaga A, Goy A, Martín-Chivelet J, López-Gómez J, Márquez L, Arche A, Plasencia P, Pla C, Marzo M, Sánchez-Fernández D (2015) Middle Triassic carbonate platforms in the eastern Iberia: evolution of their fauna and palaeogeographic significance in the western Tethys. Palaeogeogr Palaeoclimatol Palaeoecol 417:236–260

    Article  Google Scholar 

  18. Fürsich FT, Oschmann W (1993) Shell beds as tools in basin analysis: the Jurassic of Kachchh, western India. J Geol Soc 150:169–185

    Article  Google Scholar 

  19. Gaillard C, Olivero D (1993) Interprétation paléoécologique nouvelle de Zoophycos Massalongo, 1855. C R Acad Sci Paris 316:823–830

    Google Scholar 

  20. Gaillard C, Hennebert M, Olivero D (1998) Lower Carboniferous Zoophycos from the Tournai Area (Belgium): environmental and ethologic significance. Geobios 32:513–524

    Article  Google Scholar 

  21. Giannetti A, McCann T (2010) The Upper Paleocene of the Zumaya section (northern Spain): review of the ichnological content and preliminary palaeoecological interpretation. Ichnos 17:137–161

    Article  Google Scholar 

  22. Giannetti A, Monaco P, Corbí H, Soria JM (2014) Integrated taphonomy in an open-marine platform: the Lower Cretaceous of Sierra Helada (Betic Cordillera, SE Spain). Cretac Res 51:274–284

    Article  Google Scholar 

  23. Goldfuss G A (1838) Petrefacta Germaniae.—Teil 2, 312 p, Taf. 72–165, Teil 3, 128 p, Taf. 166–200. Düsseldorf

  24. Hall J (1843) Geology of New York. Part 4. Comprising the survey of the Fourth geological District. Carroll and Cook, Albany

    Google Scholar 

  25. Hall J (1847) Paleontology of New York. Volume 1. C. Van Benthuysen, Albany

    Google Scholar 

  26. Hirsch F, Márquez-Aliaga A, Santisteban C (1987) Distribución de moluscos y conodontos del tramo superior del Muschelkalk en el sector occidental de la provincia sefardí. Cuad Geol Ibér 2:799–814

    Google Scholar 

  27. Jaglarz P, Uchman A (2010) A hypersaline ichnoassemblage from the Middle Triassic carbonate ramp of the Tatricum domain in the Tatra Mountains, southern Poland. Palaeogeogr Palaeoclimatol Palaeoecol 292:71–81

    Article  Google Scholar 

  28. Kidwell SM, Bosence DWJ (1991) Taphonomy and time-averaging of marine shelly faunas. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the fossil record. Plenum Press, New York, pp 115–209

    Chapter  Google Scholar 

  29. Knaust D (2004) The oldest Mesozoic nearshore Zoophycos: evidence from the German Triassic. Lethaia 37:297–306

    Article  Google Scholar 

  30. Knaust D (2009) Complex behavioural pattern as an aid to identify the producer of Zoophycos from the Middle Permian of Oman. Lethaia 42:146–154

    Article  Google Scholar 

  31. Knaust D (2013) The ichnogenus Rhizocorallium: classification, trace makers, palaeoenvironments and evolution. Earth Sci Rev 126:1–47

    Article  Google Scholar 

  32. Knaust D, Costamagna LG (2012) Ichnology and sedimentology of the Triassic carbonates of north-west Sardinia, Italy. Sedimentology 59:1190–1207

    Article  Google Scholar 

  33. Kotake N (1989) Paleoecology of the Zoophycos producers. Lethaia 22:327–341

    Article  Google Scholar 

  34. Kotake N (1991) Non-selective surface deposit feeding by the Zoophycos producers. Lethaia 24:379–385

    Article  Google Scholar 

  35. Kotake N (1992) Deep-sea echiurans: possible producers of Zoophycos. Lethaia 25:311–316

    Article  Google Scholar 

  36. Lewis DW (1970) The New Zealand Zoophycos. NZ J Geol Geophys 13:295–315

    Article  Google Scholar 

  37. López Gómez J, Arche A (1992) Las unidades litoestratigráficas del Pérmico y Triásico inferior y medio en el sector SE de la Cordillera Ibérica. Estud Geol 48:123–143

    Article  Google Scholar 

  38. Löwemark L (2012) Ethological analysis of the trace fossil Zoophycos: hints from the Arctic Ocean. Lethaia 45:290–298

    Article  Google Scholar 

  39. Löwemark L (2015) Testing ethological hypotheses of the trace fossil Zoophycos based on Quaternary material from the Greenland and Norwegian Seas. Palaeogeogr Palaeoclimatol Palaeoecol 425:1–13

    Article  Google Scholar 

  40. Löwemark L, Lin I, Wang C, Huh C, Wei K, Chen C (2004) Ethology of the Zoophycos-producer: arguments against the gardening model from δ13Corg evidences of the spreiten material. Terr Atmos Ocean Sci 15:713–725

    Article  Google Scholar 

  41. MacEachern JA, Pemberton SG, Gingras MK, Bann KL (2007) The ichnofacies paradigm: a fifty-year retrospective. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 52–77

    Chapter  Google Scholar 

  42. Márquez-Aliaga A, Emig CC, Brito JM (1999) Triassic lingulide brachiopods from the Iberian Range (Spain). Geobios 32:815–821

    Article  Google Scholar 

  43. Márquez-Aliaga A, Emig CC, López-Gómez J (2007) Triassic Lingularia (Brachiopoda) from Moya (SE Iberian Ranges, Spain). Resúmenes XXIII Jornadas de Paleontología. Caravaca de la Cruz, Murcia, pp 121–122

    Google Scholar 

  44. Massalongo AB (1855) Zoophycos novum genus plantarum fossilium. Antonelli Edizioni, Verona

    Google Scholar 

  45. Mayer G (1954) Ein neues Rhizocorallium aus dem Mittleren Hauptmuschelkalk von Bruchsal. Beitr Nat kdl Forsch 13:80–83

    Google Scholar 

  46. Miller MF (1991) Morphology and distribution of Paleozoic Spirophyton and Zoophycos: implications for the Zoophycos ichnofacies. Palaios 6:410–425

    Article  Google Scholar 

  47. Monaco P, Giannetti A (2002) Three-dimensional burrow systems and taphofacies in shallowing-upward parasequences, Lower Jurassic carbonate platform. Facies 47:57–82

    Article  Google Scholar 

  48. Monaco P, Bracchini L, Rodríguez-Tovar FJ, Uchman A, Coccioni R (2016) Evolutionary trend of Zoophycos morphotypes from Upper Cretaceous–Lower Miocene in the type pelagic sections of Gubbio, central Italy. Lethaia. doi:10.1111/let.12175

    Google Scholar 

  49. Olivero D (1996) Zoophycos distribution and sequence stratigraphy. Examples from the Jurassic and Cretaceous deposits in southeastern France. Palaeogeogr Palaeoclimatol Palaeoecol 123:273–287

    Article  Google Scholar 

  50. Olivero D (2003) Early Jurassic to Late Cretaceous evolution of Zoophycos in the French subalpine basin (southeastern France). Palaeogeogr Palaeoclimatol Palaeoecol 192:59–78

    Article  Google Scholar 

  51. Olivero D, Gaillard C (1996) Palaeoecology of Jurassic Zoophycos from south-eastern France. Ichnos 4:249–260

    Article  Google Scholar 

  52. Olivero D, Gaillard C (2007) A constructional model for Zoophycos. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 466–477

    Chapter  Google Scholar 

  53. Posenato R, Holmer LE, Prinoth H (2014) Adaptive strategies and environmental significance of lingulid brachiopods across the late Permian extinction. Palaeogeogr Palaeoclimatol Palaeoecol 399:373–384

    Article  Google Scholar 

  54. Richter R (1937) Marken und Spuren aus allen Zeiten I-II. Senckenbergiana 19:150–169

    Google Scholar 

  55. Savary B, Olivero D, Gaillard C (2004) Calciturbidite dynamics and endobenthic colonization: example from a late Barremian (Early Cretaceous) succession in southeastern France. Palaeogeogr Palaeoclimatol Palaeoecol 211:221–239

    Article  Google Scholar 

  56. Schmid EE (1876) Der Muschelkalk des östlichen Thüringen. Fromann, Jena

    Google Scholar 

  57. Schmidt M (1935) Fossilien der Spanischen Trias. Abh Der Heidelbg Akad Der Wiss 22:1–140

    Google Scholar 

  58. Seilacher A (2007) Trace Fossil Analysis. Springer-Verlag, New York

    Google Scholar 

  59. Simpson S (1970) Notes on Zoophycos and Spirophyton. In: Crimes TP, Happer JC (eds) Trace Fossils. Seel House Press, Liverpool, pp 505–515

  60. Sopeña A, De Vicente G (2004) Subdivisiones de las cordilleras Ibérica y costero Catalana. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 465–527

    Google Scholar 

  61. Sýkora M, Siblík M, Soták J (2011) Siliciclastics in the Upper Triassic dolomite formations of the Krížna Unit (Malá Fatra Mountains, Western Carpathians): constraints for the Carnian Pluvial Event in the Fatric Basin. Geol Carpath 62:121–138

    Article  Google Scholar 

  62. Tomašových A (2004) Effect of extrinsic factors on biofabric and brachiopod alteration in a shallow intraplatform carbonate setting (Upper Triassic, West Carpathians). Palaios 19:349–371

    Article  Google Scholar 

  63. Uchman A (1995) Taxonomy and palaeoecology of flysch trace fossils: the Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15:3–115

    Google Scholar 

  64. Venzo S (1950) Ammoniti e vegetali albiano-cenomaniani nel Flysch del Bergamasco occidentale. Atti Soc Ital Sci Nat Mus Civ Storia Nat Milano 89:175–286

    Google Scholar 

  65. Webby BD (1969) Trace fossils Zoophycos and Chondrites from the Tertiary of New Zealand. NZ J Geol Geophys 12:208–214

    Article  Google Scholar 

  66. Wetzel A, Werner F (1981) Morphology and ecological significance of Zoophycos in deep-sea sediments off NW Africa. Palaeogeogr Palaeoclimatol Palaeoecol 31:85–212

    Google Scholar 

  67. Wetzel A, Blechschmidt I, Uchman A, Matter A (2007) A highly diverse ichnofauna in Late Triassic deep-sea fan deposits of Oman. Palaios 22:567–576

    Article  Google Scholar 

  68. Zenker JC (1836) Historisch-topographisches Taschenbuch von Jena und seiner Umgebung besonders in naturwissenschaftlicher und medicinischer Beziehung. Wackenhoder, Jena

    Google Scholar 

  69. Zhang L-J, Zhao Z (2015) Lower Devonian trace fossils and their paleoenvironmental significance from the western Yangtze Plate, South China. Turk J Earth Sci 24:325–343

    Article  Google Scholar 

  70. Zhang L-J, Zhao Z (2016) Complex behavioural patterns and ethological analysis of the trace fossil Zoophycos: evidence from the Lower Devonian of South China. Lethaia 49:275–284

    Article  Google Scholar 

  71. Zhang L-J, Fan R-Y, Gong Y-M (2015) Zoophycos macroevolution since 541 Ma. Sci Rep 5 14954:1–10

    Google Scholar 

Download references

Acknowledgements

This research was supported by the projects CGL2015-66835-P and CGL2015-66604-R, financed by the Spanish Ministry of Education and Science (MINECO, government of Spain). The authors thank Javier Martínez (Universidad de Alicante) for improving the graphics. We gratefully acknowledge F. Fürsich, an anonymous reviewer, and the editor for their valuable comments and constructive reviews.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alice Giannetti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giannetti, A., Tent-Manclús, J.E. & Baeza-Carratalá, J.F. New evidence of nearshore Mid-Triassic Zoophycos: morphological and paleoenvironmental characterization. Facies 63, 16 (2017). https://doi.org/10.1007/s10347-017-0498-8

Download citation

Keywords

  • Middle Triassic
  • Zoophycos
  • Shallow-water environment
  • Iberian Range
  • Spain