Skip to main content
Log in

Microbialite elongation by means of coalescence: an example from the middle Furongian (upper Cambrian) Notch Peak Formation of western Utah

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Strongly elongate microbialites having axial ratios greater than 4:1 and sometimes exceeding 10:1, are currently forming in modern, shallow-subtidal to intertidal environments. Construction of these elongate forms is greatly dependent on hydrodynamics, microbially influenced trapping and binding of sediment, and/or precipitation of peloidal cement, and intertidally generated abrasion and mechanical scour over sheet-like microbial mats. Some of these processes, however, are inadequate for explaining the construction of strongly elongate structures in deep-subtidal or wave-restricted environments. Since elongate morphogenesis is an important factor in paleoenvironmental reconstructions, ancient examples of elongate-related growth sequences should be documented and compared with modern analogues. This paper explores such a growth sequence from a 13-m-thick, middle Furongian (upper Cambrian) microbialite bed in western Utah that records a morphological succession of deep, subtidal microbialites in vertical section over a large geographical area. Microbialites change from round, decimeter-sized forms to large, elongate structures many meters in length, reverting back to round, centimeter-sized shapes at the top of the bed. We suggest that these elongate microbialites formed as a result of coalescence, a process known to produce compound microbialite structures in shallow water, but seldom explored as a key factor in the elongation of deep, subtidal forms that grew in ancient environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andres MS, Reid PR (2006) Growth morphologies of modern marine stromatolites: a case study from Highborne Cay, Bahamas. Sediment Geol 185:310–328

    Article  Google Scholar 

  • Berelson WM, Corsetti FA, Pepe-Ranney C, Hammond DE, Beaumont W, Spear JR (2011) Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation. Geobiology 9:411–424

    Google Scholar 

  • Bertrand-Sarfati J, Awramik SM (1992) Stromatolites of the Mescal Limestone (Apache Group, middle Proterozoic, central Arizona): taxonomy, biostratigraphy, and paleoenvironments. Geol Soc Am Bull 104:1138–1155

    Article  Google Scholar 

  • Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:21–44

    Article  Google Scholar 

  • Bourgault D, Kelley DE, Galbraith PS (2008) Turbulence and boluses on an internal beach. J Mar Res 66(5):563–588. doi:10.1357/002224008787536835

    Article  Google Scholar 

  • Bunting JA (1986) Geology of the eastern part of the Nabberu Basin Western Australia. Geol. Surv. West. Aust. Bull. 131:1–130

    Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Article  Google Scholar 

  • Button A, Vos R (1977) Subtidal and intertidal clastic and carbonate sedimentation in a macrotidal environment: an example from the lower Proterozoic of South Africa. Sediment. Geol. 18:175–200

    Article  Google Scholar 

  • Cacchione DA, Pratson LF, Ogston AS (2002) The shaping of continental slopes by internal tides. Science 296:724–727. doi:10.1126/science.1069803

    Article  Google Scholar 

  • Campbell FHA, Cecile MP (1975) Report on the geology of the Kilohigok Basin, Goulburn Group, Bathhurst Inlet, NWT. Pap.—Geol. Surv. Can. 75–1:297–306

    Google Scholar 

  • Cloud PE, Semikhatov MA (1969) Proterozoic stromatolite zonation. Am J Sci 267:1017–1061

    Article  Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324:55–58

    Article  Google Scholar 

  • Dravis JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219(4583):385–386

    Article  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13(9):429–438

    Article  Google Scholar 

  • Eriksson KA (1977) Tidal flat and subtidal sedimentation in the 2250 MY Malmani Dolomite, Transvall, South Africa. Sediment. Geol. 18:223–244

    Article  Google Scholar 

  • Feddersen F (2011) Observations of the surf-zone turbulent dissipation rate. J. Phys. Oceanogr. 42:386–399. doi:10.1175/JPO-D-11-082.1

    Article  Google Scholar 

  • Feldmann M, McKenzie JA (1998) Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios 13:201–212

    Article  Google Scholar 

  • Gebelein CD (1969) Distribution, morphology and accretion rate of recent subtidal algal microbialites, Bermuda. J. Sediment. Petrol. 39:49–60

    Google Scholar 

  • Ginsburg RN, Planavsky NJ (2008) Diversity of Bahamian microbialite substrates. In: Dilek T, Furnes H, Muelenbachs K (eds) Links between geological processes, microbial activities and evolution of life: modern approaches in solid earth sciences, vol 4. Springer, New York, pp 177–195

    Chapter  Google Scholar 

  • Hintze LF (1974a) Preliminary geologic map of The Barn quadrangle, U.S. Geological Survey Miscellaneous Field Studies, MF–636, two plates, scale 1:48,000, Millard County, Utah

  • Hintze LF, Taylor ME, Miller JF (1988) Upper Cambrian–Lower Ordovician Notch Peak Formation in western Utah. U.S. Geol. Surv. Prof. Pap. 1393:1–29

    Google Scholar 

  • Hoffman P (1967) Algal microbialites: use in stratigraphic correlation and paleocurrent determination. Science 157:1043–1045

    Article  Google Scholar 

  • Hoffman P (1976) Stromatolite morphogenesis in Shark Bay, Western Australia. In: Walter MR (ed) Developments in sedimentology: stromatolites, vol 20. Elsevier, Amsterdam, pp 261–271

    Google Scholar 

  • Logan BW (1961) Cryptozoon and associate stromatolites from the recent, Shark Bay, Western Australia. J. Geol. 69(5):517–533

    Article  Google Scholar 

  • Logan BW, Rezak R, Ginsburg RN (1964) Classification and environmental significance of algal stromatolites. J Geol 72(1):68–83

    Article  Google Scholar 

  • Logan BW, Hoffman P, Gebelein CD (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. In: Logan BW, Read JF, Hagan GM, Hoffman P, Brown RG, Woods PJ, Gebelein CD (eds) Evolution and diagenesis of quaternary carbonate sequences, Shark Bay, Western Australia. Am Assoc Pet Geol Mem 13:140–194

  • Mariotti G, Perron JT, Bosak T (2014) Feedbacks between flow, sediment motion and microbial growth on sand bars initiate and shape elongated stromatolite mounds. Earth Planet. Sci. Lett. 397:93–100

    Article  Google Scholar 

  • Miller JF, Evans KR, Loch JD, Ethington RL, Stitt JH, Holmer L, Popov LE (2003) Stratigraphy of the Sauk III interval (Cambrian–Ordovician) in the Ibex area, western Millard County, Utah and central Texas. Brigh Young Univ. Geol. Stud. 47:23–118

    Google Scholar 

  • Petroff AP, Sim MS, Maslov A, Krupenin M, Rothman DH, Bosak T (2010) Biophysical basis for the geometry of conical microbialites. Proc. Natl Acad Sci. USA 107:9956–9961

    Article  Google Scholar 

  • Palmer AR (1981) Subdivision of the Sauk sequence. In: Taylor ME (ed) Short papers for the second international symposium on the cambrian system. U.S. Geological Survey, Open-File Report 81–743, pp 160–162

  • Playford PE (1980) Environmental controls on the morphology of modern microbialites at Hamelin Pool, Western Australia. Annu. Rep. Geol. Surv. West. Aust. 73–77

  • Playford PE, Cockbain AE (1976) Modern algal stromatolites at Hamlin Pool, a hypersaline barred basin in Shark Bay, Western Australia. In: Walter MR (ed) Developments in sedimentology: stromatolites, vol 20. Elsevier, Amsterdam, pp 261–271

    Google Scholar 

  • Playford PE, Cockbain AE, Berry PF, Roberts AP, Haines PW, Brooks BP (2013) The geology of Shark Bay. Geol. Surv. West. Aust. Bull. 146:1–281

    Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  Google Scholar 

  • Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, Benmore WC (1978) Microbialite morphogenesis—progress and problems. Can J Earth Sci 16:992–1015

    Article  Google Scholar 

  • Serebryakov SN, Semikhatov MA (1974) Riphean and recent stromatolites: a comparison. Am J Sci 274:556–574

    Article  Google Scholar 

  • Shapiro R (1990) Morphological variations within a modern stromatolite field, Lee Stocking Island, Exuma Cays, Bahamas. In: Bain RJ (ed) Fifth Symp. Geol. Bahamas: San Salvador, Bahamian Field Station, pp 209–220

  • Young GM (1973) Stratigraphy, paleocurrents and stromatolites of Hadrynian (Upper Cambrian) rocks of Victoria Island, Artic Archipelago, Canada. Precambrian Res. 1:13–41

    Article  Google Scholar 

  • Young GM, Long DGF (1976) Microbialites and basin analysis: an example from the upper Proterozoic of northwestern Canada. Palaeogeogr Palaeoclimatol Palaeoecol. 19:303–318

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Stan Awramik and Paul Buchheim for editorial assistance, as well as providing insightful ideas to help further our research. Thanks to Kevin Nick and Ronald Nalin for their expertise in sedimentary geology. Thanks for the valuable suggestions from two anonymous reviewers. This work was partially supported by a Geological Society of America Research Grant, and an American Association of Petroleum Geologists (AAPG), John H. and Colleen Silcox named research grant. Thanks to Loma Linda University for ongoing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken P. Coulson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulson, K.P. Microbialite elongation by means of coalescence: an example from the middle Furongian (upper Cambrian) Notch Peak Formation of western Utah. Facies 62, 20 (2016). https://doi.org/10.1007/s10347-016-0469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-016-0469-5

Keywords

Navigation