Facies

, Volume 60, Issue 2, pp 703–717 | Cite as

Late Early Cambrian archaeocyath reefs in Hubei Province, South China: modes of construction during their period of demise

  • Natsuko Adachi
  • Takashi Nakai
  • Yoichi Ezaki
  • Jianbo Liu
Original Article

Abstract

The Lower Cambrian (lower Toyonian) Tianheban Formation of Hubei Province, South China, includes small archaeocyath–calcimicrobial reefs that formed by combinations of archaeocyaths (e.g., Archaeocyathus yichangensis) and calcimicrobes (including Epiphyton, Renalcis, and Girvanella). The archaeocyaths provided substrates onto which the calcimicrobes became attached. In particular, Girvanella encrusts directly upon the surfaces of archaeocyaths, and bush-shaped aggregations of Epiphyton, growing downward, spread over the Girvanella. The remaining spaces among these reef framework-builders are infilled by chambered forms of Epiphyton and/or Renalcis. These calcimicrobes made a strong contribution to reinforcement of the reef frameworks. The archaeocyath-bearing reefs in South China first appeared during the Atdabanian and are last seen in the early Toyonian Tianheban Formation in Hubei Province. Subsequent reefs are purely microbial reefs without archaeocyaths. The Tianheban reefs are therefore the last representatives of archaeocyath-bearing reefs in South China. These reefs, reported herein, record the transition from archaeocyath–calcimicrobial reefs to purely microbial reefs during the Toyonian. Further studies involving integrated geobiological and geochemical analyses are needed to identify the factors that led to the demise of archaeocyath-bearing reefs and that subsequently hindered the development of skeletal-dominated reefs for 40 million years.

Keywords

Archaeocyath Calcimicrobe Cambrian Reef South China 

References

  1. Adachi N, Ezaki Y, Liu J (2011) Early Ordovician shift in reef construction from microbial to metazoan reefs. Palaios 26:106–114CrossRefGoogle Scholar
  2. Álvaro JJ, Debrenne F (2010) The Great Atlasian Reef complex: an early Cambrian subtropical fringing belt that bordered West Gondwana. Palaeogeogr Palaeoclimatol Palaeoecol 294:120–132CrossRefGoogle Scholar
  3. Álvaro JJ, Vennin E (1998) Stratigraphic signature of a terminal Early Cambrian regressive event in the Iberian. Can J Earth Sci 35:402–411CrossRefGoogle Scholar
  4. Álvaro JJ, Vennin E, Moreno-Eiris E, Perejón A, Bechstädt T (2000) Sedimentary patterns across the Lower–Middle Cambrian transition in the Esla nappe (Cantabrian Mountains, northern Spain). Sediment Geol 137:43–61CrossRefGoogle Scholar
  5. Álvaro JJ, Monceret E, Monceret S, Verraes G, Vizcaïno D (2010) Stratigraphic record and palaeogeographic context of the Cambrian Epoch 2 subtropical carbonate platforms and their basinal counterparts in SW Europe, West Gondwana. Bull Geosci 85:573–584CrossRefGoogle Scholar
  6. Barnaby RJ, Read JF (1990) Carbonate ramp to rimmed shelf evolution: Lower to Middle Cambrian continental margin, Virginia Appalachians. Geol Soc Am Bull 102:391–404CrossRefGoogle Scholar
  7. Brasier MD (1995) The basal Cambrian transition and Cambrian bio-events (from Terminal Proterozoic extinctions to Cambrian biomeres). In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 113–118Google Scholar
  8. Dang H, Liu J, Yuan X (2008) Microbialites in the Middle Cambrian Qinjiamiao Group in Xingshan, Hubei Province: implication for paleoenvironmental reconstruction. Acta Sci Nat Univ Pekinensis 2008(2):40–47 (In Chinese with English abstract)Google Scholar
  9. Debrenne F, James NP (1981) Reef-associated archaeocyathans from the Lower Cambrian of Labrador and Newfoundland. Palaeontology 24:343–378Google Scholar
  10. Debrenne F, Kruse PD (1986) Shackleton limestone archaeocyaths. Alcheringa 10:235–278CrossRefGoogle Scholar
  11. Debrenne F, Rozanov A, Webers GF (1984) Upper Cambrian Archaeocyatha from Antarctica. Geol Mag 121:291–299CrossRefGoogle Scholar
  12. Debrenne F, Gandin A, Zhuravlev AY (1991) Palaeoecological and sedimentological remarks on some Lower Cambrian sediments of the Yangtze platform (China). Bull Geol Soc France 162:575–583Google Scholar
  13. Debrenne F, Zhuravlev AY, Kruse PD (2002) Class Archaeocyatha Bornemann, 1884. In: Hooper NA, Van Soest RMW (eds) Systema Porifera: a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York, pp 1539–1699Google Scholar
  14. Elicki O (1999) Palaeoecological significance of calcimicrobial communities during ramp evolution: an example from the Lower Cambrian of Germany. Facies 41:27–40CrossRefGoogle Scholar
  15. Fagerstrom JA (1991) Reef-building guilds and a checklist for determining guild membership: a new approach for study of communities. Coral Reefs 10:47–52CrossRefGoogle Scholar
  16. Gandin A, Debrenne F (2010) Distribution of the archaeocyath–calcimicrobial bioconstructions on the Early Cambrian shelves. Palaeoworld 19:222–241CrossRefGoogle Scholar
  17. Glass LM, Phillips D (2006) The Kalkarindji continental flood basalt province: a new Cambrian large igneous province in Australia with possible link to faunal extinction. Geology 34:461–464CrossRefGoogle Scholar
  18. Grasby SE, Sanai G, Beauchamp B (2011) Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nature Geosci 4:104–107CrossRefGoogle Scholar
  19. Grotzinger J, Adams EW, Schröder S (2005) Microbial-metazoan reefs of the terminal Proterozoic Nama Group (c. 550–543 Ma), Namibia. Geol Mag 142:499–517CrossRefGoogle Scholar
  20. Hicks M, Rowland SM (2009) Early Cambrian microbial reefs, archaeocyathan inter-reef communities, and associated facies of the Yangtze Platform. Palaeogeogr Palaeoclimatol Palaeoecol 281:137–153CrossRefGoogle Scholar
  21. Hough ML, Shields GA, Evins LZ, Strauss H, Henderson RA, Mackenzie S (2006) A major sulphur isotope event at c. 510 Ma: a possible anoxia–extinction–volcanism connection during the Early–Middle Cambrian transition? Terra Nova 18:257–263CrossRefGoogle Scholar
  22. James NP, Debrenne F (1980) Lower Cambrian bioherms: pioneer reefs of the Phanerozoic. Acta Palaeont Polon 25:3–4Google Scholar
  23. James NP, Gravestock ID (1990) Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia. Sedimentology 37:455–480CrossRefGoogle Scholar
  24. James NP, Kobluk DR (1978) Lower Cambrian patch reefs and associated sediments: southern Labrador, Canada. Sedimentology 25:1–35CrossRefGoogle Scholar
  25. James NP, Kobluk DR, Klappa CF (1989) Early Cambrian patch reefs, Southern Labrador. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds) Reefs, Canada and adjacent areas. Can Soc Petrol Geol Mem 13:141–150Google Scholar
  26. Knoll AH, Fischer WW (2011) Skeletons and ocean chemistry: the long view. In: Gattuso JP, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 67–82Google Scholar
  27. Kruse PD (1991) Cyanobacterial-archaeocyathan–radiocyathan bioherms in the Wirrealpa Limestone of South Australia. Can J Earth Sci 28:601–615CrossRefGoogle Scholar
  28. Kruse PD, Zhuravlev AY, James NP (1995) Primordial metazoan-calcimicrobial reefs: Tommotian (Early Cambrian) of the Siberian Platform. Palaios 10:291–321CrossRefGoogle Scholar
  29. Lehrmann DJ, Minzoni M, Li X, Yu M, Payne JL, Kelley BM, Schaal EK, Enos P (2012) Lower Triassic oolites of the Nanpanjiang Basin, south China: facies architecture, giant ooids, and diagenesis—implications for hydrocarbon reservoirs. Am Assoc Petrol Geol Bull 96:1389–1414Google Scholar
  30. Li G, Steiner M, Zhu X, Yang A, Wang H, Bernd D, Erdtmann BD (2007) Early Cambrian metazoan fossil record of South China: generic diversity and radiation patterns. Palaeogeogr Palaeoclimatol Palaeoecol 254:229–249CrossRefGoogle Scholar
  31. Li F, Yan J, Algeo T, Wu X (2013) Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China). Global Planet Change 105:102–120CrossRefGoogle Scholar
  32. Ogg JG, Ogg G, Gradstein FM (2008) Geologic time scale. Cambridge University Press, CambridgeGoogle Scholar
  33. Peng S, Zhu X, Zuo J, Lin H, Chen Y, Wang L (2011) Recently ratified and proposed Cambrian Global Standard Stratotype-Section and Point. Acta Geol Sin (English Edition) 85:296–308CrossRefGoogle Scholar
  34. Pratt BR (1984) Epiphyton and Renalcis; diagenetic microfossils from calcification of coccoid blue–green algae. J Sediment Res 54:948–971Google Scholar
  35. Pratt BR (1989) Deep-water Girvanella-Epiphyton reef on a Mid-Cambrian continental slope. Rockslide Formation, Mackenzie Mountain, Northwest Territories. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds) Reefs, Canada and adjacent areas. Can Soc Petrol Geol Mem 13:161–164Google Scholar
  36. Pratt BR (2000) Microbial contribution to reefal mud-mounds in ancient deep-water settings: evidence from the Cambrian. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin/Heidelberg, pp 307–314Google Scholar
  37. Pruss S, Clemente H, Laflamme M (2012) Early (Series 2) Cambrian archaeocyathan reefs of southern Labrador as a locus for skeletal carbonate production. Lethaia 45:401–410CrossRefGoogle Scholar
  38. Rees MN, Pratt B, Rowells AJ (1989) Early Cambrian reefs, reef complexes, and associated lithofacies of the Shackleton Limestone, Transantarctic Mountains. Sedimentology 36:341–361CrossRefGoogle Scholar
  39. Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia). Formation and concepts. Facies 29:1–8CrossRefGoogle Scholar
  40. Riding R (1977) Calcified Plectonema (blue–green algae), a recent example of Girvanella from Aldabra Atoll. Palaeontology 20:33–46Google Scholar
  41. Riding R (1991) Calcified cyanobacteria. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 55–87CrossRefGoogle Scholar
  42. Riding R (2011) Calcified cyanobacteria. In: Reitner, J Thiel V (eds) Encyclopedia of geobiology. Encyclopedia of Earth science series. Springer, Heidelberg, pp 211–233Google Scholar
  43. Riding R, Zhuravlev AY (1995) Structure and diversity of oldest sponge-microbe reefs: lower Cambrian, Aldan River, Siberia. Geology 23:649–652CrossRefGoogle Scholar
  44. Rowland S, Shapiro R (2002) Reef patterns and environmental influences in the Cambrian and Earliest Ordovician. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, vol 72. SEPM Special Publicaion, Oklahoma, pp 95–128Google Scholar
  45. Scotese CR (2001) Atlas of earth history. Paleogeography: PALEOMAP Project, vol. 1, Arlington, TXGoogle Scholar
  46. Sepkoski JJ Jr (1992) Proterozoic-Early Cambrian diversification of metazoans and metaphytes. In: Schopf JK, Klein C (eds) The Proterozoic biosphere. Cambridge University Press, Cambridge, pp 553–561Google Scholar
  47. Steiner M, Zhu M, Zhao Y, Erdtmann B (2005) Lower Cambrian Burgess Shale-type fossil associations of South China. Palaeogeogr Palaeoclimatol Palaeoecol 220:129–152CrossRefGoogle Scholar
  48. Steiner M, Li G, Qian Y, Zhu M, Erdtmann B (2007) Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeogr Palaeoclimatol Palaeoecol 254:67–99CrossRefGoogle Scholar
  49. Tucker M, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publications, OxfordCrossRefGoogle Scholar
  50. Wang XF, Ni SZ, Zhen QL, Xu GH, Zhou TM, Li ZH, Xiang LW, Lai CG (1987) Biostratigraphy of the Yangtze Gorge Area 2: Early Palaeozoic Era. Geological Publishing House, Beijing (in Chinese with English summary)Google Scholar
  51. Woo J, Chough SK, Han Z (2008) Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle. Cambrian), Shandong Province, China. Palaios 23:55–64CrossRefGoogle Scholar
  52. Wood RA (2000) Palaeoecology of a Late Devonian back-reef: Canning Basin, Western Australia. Palaeontology 43:671–703CrossRefGoogle Scholar
  53. Wood RA (2011) Paleoecology of the earliest skeletal metazoan communities: implications for early biomineralization. Earth Sci Rev 106:184–190CrossRefGoogle Scholar
  54. Wood RA, Zhuravlev AY, Debrenne F (1992) Functional biology and ecology of Archaeocyatha. Palaios 7:131–15Google Scholar
  55. Ye J, Xu A (1996) Main features of Cambrian reefs in China. In: Fan J (ed) The ancient organic reefs of China and their relations to oil and Gas. Marine Publication House, Beijing, pp 14–17Google Scholar
  56. Yuan K, Zhang S (1981) Lower Cambrian archaeocyathid assemblages of central and southwestern China. Geol Soc Am Spec Pap 187:39–53CrossRefGoogle Scholar
  57. Zankl H (1993) The Origin of high-Mg-Calcite microbialites in cryptic habitats of Caribbean coral reefs—their dependence on light and turbulence. Facies 29:55–60CrossRefGoogle Scholar
  58. Zhang L, Yuang K (1994) Archaeocyath reefs from the Lower Cambrian Tianheban Formation at Wangjiaping, Yichang. Hubei and their diagenesis. Sci Geol 29:236–245 (In Chinese with English Abstract)Google Scholar
  59. Zhao L, Chen Z, Algeo TJ, Chen J, Chen Y, Tong J. Gao S, Zhou L, Hu Z, Liu Y (2013) Rare-earth element patterns in conodont albid crowns: evidence for massive inputs of volcanic ash during the latest Permian biocrisis? Global Planet Change 105:135–151Google Scholar
  60. Zhen R, Zeng Y (1988) Sedimentary characteristics of Early Cambrian Yutang organic reefs in western Hunan. Acta Sediment Sin 6:61–67Google Scholar
  61. Zhuravlev AY, Wood RA (1995) Lower Cambrian reefal cryptic communities. Palaeontology 38:443–470Google Scholar
  62. Zhuravlev AY, Wood RA (1996) Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology 24:311–314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Natsuko Adachi
    • 1
    • 3
  • Takashi Nakai
    • 1
  • Yoichi Ezaki
    • 1
  • Jianbo Liu
    • 2
  1. 1.Department of GeosciencesOsaka City UniversityOsakaJapan
  2. 2.School of Earth and Space SciencesPeking UniversityBeijingPeople’s Republic of China
  3. 3.Department of GeosciencesNaruto University of EducationNarutoJapan

Personalised recommendations