Skip to main content
Log in

Depositional processes of the mixed carbonate–siliciclastic rhodolith beds of the Miocene Saint-Florent Basin, northern Corsica

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Many sedimentary processes can lead to the formation of mixed carbonate–siliciclastic sediments in shallow shelf environments. The Miocene Saint-Florent Basin (Corsica), and in particular the Monte S. Angelo Formation, offers the possibility to analyze coarse mixed sediments produced by erosion of a rocky coast, ephemeral stream input, and shallow-water carbonate production dominated by red algae. The Monte S. Angelo Formation was deposited during the Burdigalian to Langhian interval. During this interval, the island of Corsica experienced increased subsidence related to the development of the Ligurian-Provençal Basin and associated Sardinia-Corsica block rotation. Four main rhodolith-rich subfacies have been recognized: conglomerate with rhodoliths, massive rhodolith rudstone, well-bedded rhodolith rudstone, and rhodolith floatstone. The four facies have been interpreted as having been deposited in different environments of a gravel-dominated, nearshore to offshore prograding wedge. Deep-water melobesioids dominate the red algal assemblage from shoreface to offshore. Shallow-water subfamilies of lithophylloids and mastophoroids occur in only accessory amounts. Poor illumination is believed to be due to terrigenous input by ephemeral streams and wave- and current-resuspension. Resuspension processes are favored by the limited occurrence of seagrasses. Two types of siliciclastic–carbonate mixing processes characterize the investigated rhodolith-rich deposits: (1) punctuated mixing, produced by the re-deposition of terrigenous sediments by debris-flow processes during flooding events onto carbonate sediments together with rhodoliths of the shoreface environments, and (2) in situ mixing, produced by growth of coralline algae on siliciclastic pebbles to form the rhodoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adey WH (1986) Coralline algae as indicators of sea-level. In: Van de Plassche O (ed) Sea level research: a manual for the collection and evaluation of data. Free Univ Amsterdam Geo Books, Norwich, pp 229–280

    Chapter  Google Scholar 

  • Adey WH, MacIntyre IG (1973) Crustose coralline algae: a re-evaluation in the geological sciences. Geol Soc Am Bull 84:883–904

    Article  Google Scholar 

  • Aguirre J, Riding R, Braga JC (2000) Diversity of coralline red algae: origination and extinction patterns from the early Cretaceous to the Pleistocene. Paleobiology 26:651–667

    Article  Google Scholar 

  • Aguirre J, Braga JC, Martín JM, Betzler C (2012) Palaeoenvironmental and stratigraphic significance of Pliocene rhodolith beds and coralline algal bioconstructions from the Carboneras Basin (SE Spain). Geodiversitas 34:115–136

    Article  Google Scholar 

  • Airoldi L (2003) The effects of sedimentation on rocky coast assemblages. Oceanogr Mar Biol Ann Rev 41:161–236

    Google Scholar 

  • Bassi D (1995) Crustose coralline algal pavements from Late Eocene Colli Berici of northern Italy. Riv Ital Paleontol Stratigr 101:81–92

    Google Scholar 

  • Bassi D (2005) Larger foraminiferal and coralline algal facies in an Upper Eocene storm-influenced, shallow water carbonate platform (Colli Berici, northeastern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 226:17–35

    Article  Google Scholar 

  • Bassi D, Nebelsick JH (2010) Components, facies and ramps: redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeogr Palaeoclimatol Palaeoecol 295:258–280

    Article  Google Scholar 

  • Bassi D, Carannante G, Murru M, Simone L, Toscano F (2006) Rhodalgal/bryomol assemblages in temperate-type carbonate, channelized depositional systems: The Early Miocene of the Sarcidano area (Sardinia, Italy). In: Pedley HM, Carannante G (eds) Cool-water carbonates: depositional systems and palaeoenvironmental controls. Geol Soc Lond Spec Publ 255:35–52

  • Bassi D, Iryu Y, Nebelsick JH (2012) To be or not to be a fossil rhodolith? Analytical methods for studying fossil rhodolith deposits. J Coast Res 28:288–295

    Article  Google Scholar 

  • Basso D (1998) Deep rhodolith distribution in the Pontian Islands, Italy: a model for a paleoecology of a temperate sea. Palaeogeogr Palaeoclimatol Palaeoecol 137:173–187

    Article  Google Scholar 

  • Benisek MF, Betzler C, Marcano G, Mutti M (2009) Coralline-algal assemblages of a Burdigalian platform-slope: implications for carbonate platform reconstruction (northern Sardinia, western Mediterranean Sea). Facies 55:375–386

    Article  Google Scholar 

  • Benisek MF, Marcano G, Betzler C, Mutti M (2010) Facies and stratigraphic architecture of a Miocene warm-temperate to tropical fault-block carbonate platform in Sardinia (Central Mediterranean Sea). In: Mutti M, Piller WE, Betzler C (eds) Carbonate systems during the Oligocene-Miocene climatic transition. Int Assoc Sediment Spec Publ 42:129–148

  • Blanc JJ (1968) Sedimentary geology of the Mediterranean Sea. Oceanogr Mar Biol Ann Rev 6:377–454

    Google Scholar 

  • Bosellini A, Ginsburg RN (1971) Form and internal structure of recent algal nodules (rhodolites) from Bermuda. J Geol 79:669–682

    Article  Google Scholar 

  • Bosence DWJ (1983a) Description and classification of rhodoliths (rhodoids, rhodolites). In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 217–224

    Chapter  Google Scholar 

  • Bosence DWJ (1983b) The occurrence and ecology of recent rhodoliths—a review. In: Peryt TM (ed) Coated grains. Springer, Berlin, pp 225–242

    Chapter  Google Scholar 

  • Bosence DWJ (1985) The morphology and ecology of a mound-building coralline alga (Neogoniolithon strictum) from the Florida Keys. Paleontology 28:189–206

    Google Scholar 

  • Bosence DWJ (2005) A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sediment Geol 175:49–72

    Article  Google Scholar 

  • Bosence DWJ, Pedley HM (1982) Sedimentology and palaeoecology of a Miocene coralline algal biostrome from the Maltese islands. Palaeogeogr Palaeoclimatol Palaeoecol 38:9–43

    Article  Google Scholar 

  • Bourrouilh-Le Jan FG, Hottinger LC (1988) Occurrence of rhodolites in the tropical Pacific—a consequence of Mid-Miocene paleooceanographic change. Sediment Geol 60:355–367

    Article  Google Scholar 

  • Bracchi VA, Basso D (2012) The contribution of calcareous algae to the biogenic carbonates of the continental shelf: Pontian Islands, Tyrrhenian Sea, Italy. Geodiversitas 34:61–76

    Article  Google Scholar 

  • Braga JC, Aguirre J (2001) Coralline algal assemblages in upper Neogene reef and temperate carbonates in southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 175:27–41

    Article  Google Scholar 

  • Braga JC, Martín JM (1988) Neogene coralline-algal growth-forms and their palaeoenvironments in the Almanzora River Valley (Almeria, S.E. Spain). Palaeogeogr Palaeoclimatol Palaeoecol 67:285–303

    Article  Google Scholar 

  • Braga JC, Bassi D, Piller WE (2010) Palaeoenvironmental significance of Oligocene-Miocene coralline red algae—a review. In: Mutti M, Piller WE, Betzler C (eds) Carbonate systems during the Oligocene-Miocene climatic transition. Int Assoc Sediment Spec Publ 42:165–182

  • Brandano M, Civitelli G (2007) Non-seagrass meadow sedimentary facies of the Pontinian Islands, Tyrrhenian Sea: a modern example of mixed carbonate–siliciclastic sedimentation. Sediment Geol 201:286–301

    Article  Google Scholar 

  • Brandano M, Vannucci G, Pomar L, Obrador A (2005) Rhodolith assemblages from the lower Tortonian carbonate ramp of Menorca (Spain): environmental and paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 226:307–323

    Article  Google Scholar 

  • Brandano M, Jadoul F, Lanfranchi A, Tomassetti L, Berra F, Ferrandini M, Ferrandini J (2009) Stratigraphic architecture of mixed carbonate–siliciclastic system in the Bonifacio Basin (Early-Middle Miocene, South Corsica). Field Trip Guide Book, 27th IAS meeting of sedimentology, Alghero Italy, 20–24 September 2009, pp 299–313

  • Brandano M, Tomassetti L, Bosellini F, Mazzucchi A (2010) Depositional model and paleodepth reconstruction of a coral-rich, mixed siliciclastic-carbonate system: the Burdigalian of Capo Testa (northern Sardinia, Italy). Facies 56:433–444

    Article  Google Scholar 

  • Cabioch G, Montaggioni LF, Faure G, Ribaud-Laurenti A (1999) Reef coralgal assemblages as recorders of paleobathymetry and sea level changes in the Indo-Pacific province. Quat Sci Rev 18:1681–1695

    Article  Google Scholar 

  • Carannante G, Simone L (1996) Rhodolith facies in the Central-Southern Apennines Mountains, Italy. In: Franseen EK, Esteban M, Ward WC, Rouchy JM (eds) Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions, SEPM Concepts Sediment Palaeont 5:261–275

  • Carminati E, Lustrino DoglioniC (2012) Geodynamic evolution of the central and western Mediterranean: tectonics vs. igneous petrology constraints. Tectonophysics 579:173–192

    Article  Google Scholar 

  • Carminati E, Lustrino M, Cuffaro M, Doglioni C (2010) Tectonics, magmatism and geodynamics of Italy: what we know and what we imagine. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) The geology of Italy: tectonics and life along plate margins. J Virt Explor 36. doi:10.3809/jvirtex.2010.00226

  • Cavazza W, DeCelles PG, Fellin MG, Paganelli L (2007) The Miocene Saint-Florent Basin in northern Corsica: stratigraphy, sedimentology, and tectonic implications. Basin Res 19:507–527

    Article  Google Scholar 

  • Cherchi A, Murru M, Simone L (2000) Miocene carbonate factories in the syn-rift Sardinia Graben subbasins (Italy). Facies 43:223–240

    Article  Google Scholar 

  • Demory F, Conesa G, Oudet J, Mansouri M, Münch P, Borgomano J, Thouveny N, Lamarche J, Gisquet F, Marié L (2011) Magnetostratigraphy and paleoenvironments in shallow-water carbonates: the Oligocene-Miocene sediments of the northern margin of the Liguro-Provençal basin (West Marseille, southeastern France). Bull Soc Géol Fr 182:37–55

    Article  Google Scholar 

  • Durand-Delga M (1984) Principaux traits de la Corse Alpine et correlations avec les Alpes Ligures. Mem Soc Geol Ital 28:285–329

    Google Scholar 

  • Fellin MG, Picotti V, Zattin M (2005) Neogene to quaternary rifting and inversion in Corsica: retreat and collision in the western Mediterranean. Tectonics 24:TC1011. doi:10.1029/2003TC001613

  • Freiwald A (1994) Sedimentological and biological aspects in the formation of branched rhodoliths in northern Norway. Beitr Paläontol 20:7–19

    Google Scholar 

  • Freiwald A, Henrich R, Schäfer P, Willkomm H (1991) The significance of high-boreal to subarctic maerl deposits in Northern Norway to reconstruct Holocene climatic changes and sea level oscillations. Facies 25:315–340

    Article  Google Scholar 

  • Gacia E, Duarte CM (2001) Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar Coast Shelf Sci 52:505–514

    Article  Google Scholar 

  • Grasso M, Lentini F, Pedley M (1982) Late Tortonian–Lower Messinian (Miocene) palaeogeography of SE Sicily: information from two new formations of the Sortino Group. Sediment Geol 32:279–300

    Article  Google Scholar 

  • Hart BS, Plint AG (1995) Gravelly shoreface and beachface deposits. In: Plint AG (ed) Sedimentary facies analysis. Int Assoc Sediment Spec Publ 22:75–99

    Google Scholar 

  • Harvey AS, Woelkerling WJ (2007) A guide to nongeniculate coralline red algal (Corallinales, Rhodophyta) rhodolith identification. Cienc Mar 33:411–426

    Google Scholar 

  • Henrich R, Freiwald A, Betzler C, Bader B, Schäfer P, Samtleben C, Brachert TC, Wehrmann A, Zankl H, Kühlmann DHH (1995) Controls on modern carbonate sedimentation on warm-temperate to Arctic coasts, shelves and seamounts in the Northern Hemisphere: implications for fossil counterparts. Facies 32:71–108

    Article  Google Scholar 

  • Hernández-Molina FJ, Fernández-Salas LM, Lobo F, Somoza L, Diáz-del-Rio V, Alveirinho Dias JM (2000) The infralittoral prograding wedge: a new large-scale progradational sedimentary body in shallow marine environments. Geo-Mar Lett 20:109–117

    Article  Google Scholar 

  • Iryu Y, Nakamori T, Matsuda S, Abe O (1995) Distribution of marine organisms and its ecological significance in the modern reef complex of the Ryukyu Islands. Sediment Geol 99:243–258

    Article  Google Scholar 

  • Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19:1095–1106

    Article  Google Scholar 

  • Kroeger KF, Reuter M, Brachert TC (2006) Palaeoenvironmental reconstruction based on non-geniculate coralline red algal assemblages in Miocene limestone of central Crete. Facies 52:381–409

    Article  Google Scholar 

  • Le Gall L, Payri CE, Bittner L, Saunders GW (2010) Multigene phylogenetic analyses support recognition of the Sporolithales ord. nov. Mol Phylogenet Evol 54:302–305

    Article  Google Scholar 

  • Mount JF (1984) Mixing of siliciclastic and carbonate sediments in shallow shelf environments. Geology 12:432–435

    Article  Google Scholar 

  • Nalin R, Nelson CS, Basso D, Massari F (2008) Rhodolith-bearing limestones as transgressive marker beds: fossil and modern examples from North Island, New Zealand. Sedimentology 55:249–274

    Article  Google Scholar 

  • Orszag-Sperber F, Poignant AF, Poisson A (1977) Paleogeographic significance of rhodolites: some examples from the Miocene of France and Turkey. In: Flügel E (ed) Fossil algae—recent results and development. Springer, Berlin, pp 286–294

    Chapter  Google Scholar 

  • Pedley HM (1998) A review of sediment distributions and processes in Oligo-Miocene ramps of southern Italy and Malta (Mediterranean divide). In: Wright VP, Burchette TP (eds) Carbonate ramps. Geol Soc Lond Spec Publ 149:163–179

  • Pérès JM, Picard J (1964) Nouveau manuel de bionomie benthique de la Mer Mediteranée. Rec Trav Stat Mar Endoume 31:3–137

    Google Scholar 

  • Perrin C, Bosence DWJ, Rosen BR (1995) Quantitative approaches to palaeozonation and palaeobathymetry of corals and coralline algae in Cenozoic reefs. In: Bosence DWJ, Allison PA (eds) Marine palaeoenvironmental analysis from fossils. Geol Soc Lond Spec Publ 83:181–229

  • Pomar L (2001) Ecological control of sedimentary accommodation: evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands. Palaeogeogr Palaeoclimatol Palaeoecol 175:249–272

    Article  Google Scholar 

  • Pomar L, Kendall CGSC (2008) Architecture of carbonate platforms: A response to hydrodynamics and evolving ecology. In: Lukasik J, Simo A (eds) Controls on carbonate platform and reef development: SEPM Spec Publ 89:187–216

  • Pomar L, Bassant P, Brandano M, Ruchonnet C, Janson X (2012) Impact of carbonate producing biota on platform architecture: insights from Miocene examples of the Mediterranean region. Earth Sci Rev 113:186–211

    Article  Google Scholar 

  • Quaranta F, Tomassetti L, Vannucci G, Brandano M (2012) Coralline algae as environmental indicators: a case study from the Attard member (Chattian, Malta). Geodiversitas 34:151–166

    Article  Google Scholar 

  • Quiquerez A, Dromart G (2006) Environmental control on granular clinoforms of ancient carbonate shelves. Geol Mag 143:343–365

    Article  Google Scholar 

  • Rasser MW (2000) Coralline red algal limestones of the late Eocene Alpine Foreland Basin in Upper Austria: components analysis, facies and paleoecology. Facies 42:59–92

    Article  Google Scholar 

  • Rasser MW, Piller WE (2004) Crustose algal frameworks from the Eocene Alpine Foreland. Palaeogeogr Palaeoclimatol Palaeoecol 206:21–39

    Article  Google Scholar 

  • Sohn YK (2000) Depositional processes of submarine debris flows in the Miocene fan deltas, Pohang Basin, SE Korea with special reference to flow transformation. J Sediment Res 70:491–503

    Article  Google Scholar 

  • Sohn YK, Choe MY, Jo HR (2002) Transition from debris flow to hyperconcentrated flow in a submarine channel (the Cretaceous Cerro Toro Formation, southern Chile). Terra Nova 14:405–415

    Article  Google Scholar 

  • Sowerbutts A (2000) Sedimentation and volcanism linked to multiphase rifting in an Oligo-Miocene intra-arc basin, Anglona, Sardinia. Geol Mag 137:395–418

    Article  Google Scholar 

  • Speranza F, Villa IM, Sagnotti L, Florindo F, Cosentino D, Cipollari P, Mattei M (2002) Age of the Corsica-Sardinia rotation and Liguro-Provençal Basin spreading: new palaeomagnetic and Ar/Ar evidence. Tectonophysics 347:231–251

    Article  Google Scholar 

  • Steneck RS (1986) The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Ann Rev Ecol Syst 17:273–303

    Article  Google Scholar 

  • Storlazzi CD, Field ME (2000) Sediment distribution and transport along a rocky, embayed coast: Monterey Peninsula and Carmel Bay, California. Mar Geol 170:289–316

    Article  Google Scholar 

  • Vigliotti L, Langenheim VE (1995) When did Sardinia stop rotating? New palaeomagnetic results. Terra Nova 7:424–435

    Article  Google Scholar 

  • Vigorito M, Murru M, Simone L (2005) Anatomy of a submarine channel system and related fan in a foramol/rhodalgal carbonate sedimentary setting; a case history from the Miocene syn-rift Sardinia Basin, Italy. Sediment Geol 174:1–30

    Article  Google Scholar 

  • Vigorito M, Murru M, Simone L (2010) Carbonate production in rift basins: models for platform inception, growth and dismantling, and for shelf to basin sediment transport, Miocene Sardinia Rift Basin, Italy. In: Mutti, M, Piller, WE, Betzler C (eds) Carbonate systems during the Oligocene-Miocene climatic transition. Int Assoc Sediment Spec Publ 42:257–282

  • Woelkerling WMJ, Irvine LM, Harvey AS (1993) Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot 6:277–293

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the University of Rome, La Sapienza (progetto di ateneo 2011 resp. M. Lustrino). The manuscript benefited greatly from criticism and suggestions of the reviewers Dan Bosence and Francesca Bosellini and of the editor of Facies, Franz Theodor Fürsich. Many thanks go to Michele (Bike-Volcano) Lustrino who pushed us to attend at Corse-Alp 2010 and for discussion on Mediterranean Geology. We are grateful to Salvatore Milli for useful discussions and comments. Laura Tomassetti and Demetrio Meloni are thanked for assistance in the field. We are thankful to Stan Beaubien for his comments and for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Brandano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandano, M., Ronca, S. Depositional processes of the mixed carbonate–siliciclastic rhodolith beds of the Miocene Saint-Florent Basin, northern Corsica. Facies 60, 73–90 (2014). https://doi.org/10.1007/s10347-013-0367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-013-0367-z

Keywords

Navigation