Skip to main content

Middle Miocene warm-temperate carbonates of Central Paratethys (Mt. Zrinska Gora, Croatia): paleoenvironmental reconstruction based on bryozoans, coralline red algae, foraminifera, and calcareous nannoplankton

Abstract

Carbonate deposits from Zrin in the Mt. Zrinska Gora were deposited in the SW part of the Central Paratethys Sea during the Middle Badenian (Middle Miocene). The studied section contains a rich fossil community of non-geniculate coralline red algae (Subfamily Melobesioideae), bryozoans, benthic and planktonic foraminifera, echinoderms, ostracods, molluscs, and calcareous nannoplankton. Based on lithological variations and changes in the biogenic components, four facies associations (FA) are distinguished. Their distribution points to skeletal production and sedimentation on a middle to proximal outer carbonate ramp. The main lithological feature of the section is an alternation of two lithofacies: fully lithified grainstone–rudstone and packstone, and semi-lithified rudstone–floatstone with a carbonate sandy matrix. Depositional environments on the ramp were periodically influenced by minor high-frequency sea-level changes and/or changes of hydrodynamic conditions, which are suggested as the driving mechanisms causing the alternation of the two lithofacies. Vertically in the succession, the two lithofacies alternate to give three thinning- and fining-upward units. The lower part of each unit is formed of a rhodolith and coralline algal FA, which passes upwards into a bryozoan-coralline algal FA and/or FA of bioclastic packstone-grainstone. Based on the vertical upward change in FAs, each unit can be interpreted as a deepening-upward sequence. Patterns in the relative abundance of bryozoan colony growth form (vinculariiform, cellariiform, adeoniform, membraniporiform, celleporiform, and reteporiform), size and abundance of rhodoliths and coralline branches, and benthic foraminifera are interpreted by comparison with data from modern and fossil environments. Based on these data, a water depth range for each FA is interpreted, providing evidence of low-frequency relative sea-level changes. It is hypothesized that relative sea-level fluctuated in the water depth range from 30 to 80 m, and in the uppermost part of the section, rich in planktonic foraminifera and calcareous nannoplankton, possibly deeper. Causes of the low-frequency relative sea-level fluctuations and the general deepening trend observed within the succession cannot be interpreted based on one section; however, they may be related to the subsidence of the depositional basin. The benthic biotic communities are a vertical alternation of rhodalgal and bryorhodalgal associations, and this is attributed to relative sea-level fluctuations. These biotic associations gave rise to warm-temperate carbonates of the Middle Badenian N9 planktonic Zone (Orbulina suturalis, O. universa) and NN4–NN5 nannoplankton Zones (Sphenolithus heteromorphus).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Adey WH, Townsend RA, Boykins WT (1982) The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithson Contrib Mar Sci 15:1–74

    Article  Google Scholar 

  • Agip SpA (1982) Foraminiferi Padani (Tercziaro e Quateriniario). Atlante iconografico e distribuzione stratigrafica. 2da edizione. Agip SpA, San Donato Milanese, 52 Tab

  • Avanić R (1997) Facies analysis of Middle Miocene on southern slopes of Mt. Medvednica—in Croatian. Unpublished MSc thesis, University of Zagreb, p 54

  • Bartol M (2009) Middle Miocene calcareous nannoplankton of NE Slovenia (western Central Paratethys). Paleontološki inštitut Ivana Rakovca ZRC SAZU, Ljubljana, p 136

    Google Scholar 

  • Bassi D, Nebelsick JH (2010) Components, facies and ramps: redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeogr Palaeoclimatol Paleoecol 295:258–280

    Article  Google Scholar 

  • Bassi D, Nebelsick JH, Checconi A, Hohenegger J, Iryu Y (2009) Present-day and fossil rhodoliths pavements compared: their potential for analysing shallow-water carbonate deposits. Sed Geol 214:74–84

    Article  Google Scholar 

  • Basso D (1998) Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeogr Palaeoclimatol Paleoecol 137:173–187

    Article  Google Scholar 

  • Basso D, Brusoni F (2004) The molluscan assemblage of a transitional environment: the Mediterranean maërl from off the Elba Island (Tuscan Archipelago, Tyrrhenian Sea). Boll Malacol 40:37–45

    Google Scholar 

  • Basso D, Vrsaljko D, Grgasović T (2008) The coralline flora of a Miocene maërl: the Croatian “Litavac”. Geol Croat 61(2–3):333–340

    Google Scholar 

  • Berning B (2006) The cheilostome bryozoan fauna from the Late Miocene of Niebla (Guadalquivir Basin, SW Spain): environmental and biogeographic implications. Mitt Geol-Paläont Inst Univ Hamburg 90:7–156

    Google Scholar 

  • Bicchi E, Ferrero E, Gonera M (2003) Palaeoclimatic interpretation based on Middle Miocene planktonic Foraminifera: the Silesia Basin (Paratethys) and Monferrato (Tethys) records. Palaeogeogr Palaeoclimatol Paleoecol 196:265–303

    Article  Google Scholar 

  • Blow WH (1969) Late Middle Eocene to recent planktonic foraminiferal biostratigraphy. In: Brönnimann P, Renz HH (eds) Proceedings of the first international conference on planktonic microfossils. Leiden E. J. Brill 1:199–421 (in Srinivinsan MS, 1975)

  • Boardman RS (1998) Reflections on the morphology, anatomy, evolution, and classification of the Class Stenolaemata (Bryozoa). Smithson Contrib Paleobiol 86:1–59

    Article  Google Scholar 

  • Bosellini A, Ginsburg RN (1971) Form and internal structure of recent algal nodules (rhodolites) from Bermuda. J Geol 79:669–682

    Article  Google Scholar 

  • Bosence DWJ (1983a) Description and classification of rhodoliths (rhodoids, rhodolites). In: Preyt TM (ed) Coated grains. Springer, Berlin, pp 217–224

    Chapter  Google Scholar 

  • Bosence DWJ (1983b) The occurrence and ecology of recent rhodoliths—a review. In: Preyt TM (ed) Coated grains. Springer, Berlin, pp 225–242

    Chapter  Google Scholar 

  • Bosence D, Wilson J (2003) Maerl growth, carbonate production rates and accumulation rates in the northeast Atlantic. Aquatic Conserv Mar Freshw Ecosyst 13:S21–S31

    Article  Google Scholar 

  • Braga JC, Aguirre J (2001) Coralline algal assemblages in upper Neogene reef and temperate carbonates in southern Spain. Palaeogeogr Palaeoclimatol Paleoecol 175:27–41

    Article  Google Scholar 

  • Braga JC, Aguirre J (2004) Coralline algae indicate Pleistocene evolution from deep, open platform to outer barrier environments in the northern Great Barrier Reef margin. Coral Reefs 23:547–558

    Google Scholar 

  • Brandano M (2002) La Formazione dei “Calcari a Briozoi e Litotamni” nell′area di Tagliacozzo (Apennino Centrale): e considerazioni paleoambientali sulle facies rodalgali. Boll Soc Geol It 121:179–186

    Google Scholar 

  • Brandano M, Vannucci G, Pomar L, Obrador A (2005) Rhodolith assemblages from the Lower Tortonian carbonate ramp of Menorca (Spain): environmental and paleoclimatic implications. Palaeogeogr Palaeoclimatol Paleoecol 226:307–323

    Article  Google Scholar 

  • Brkić M (1966) Miocene fossils from the Dvor on Una area—in Croatian. Unpublished BSc thesis, University of Zagreb, p 40

  • Carannante G, Esteban M, Milliman JD, Simone L (1988) Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sediment Geol 60:333–346

    Article  Google Scholar 

  • Ćorić S, Rögl F (2004) Roggendorf–1 borehole, a key-section for Lower Badenian transgressions and the stratigraphic position of the Grund formation (Molasse Basin, Lower Austria). Geol Carpath 55:165–178

    Google Scholar 

  • Ćorić S, Pavelić D, Rögl F, Mandic O, Vrabac S, Avanić R, Jerković L, Vranjković A (2009) Revised Middle Miocene datum for initial marine flooding of North Croatian Basins (Pannonian Basin System, Central Paratethys). Geol Croat 62:31–43

    Google Scholar 

  • Ćurčić SM (1898) Zrinjsko–dvorska neogenterciarna kotlina—in Croatian. Rad—Yugosl Acad Sci Arts 87:1–124

  • Dolàkovà N, Brzobohatý R, Hladilovà Š, Nehyba S (2008) The red-algal facies of the Lower Badenian limestones of the Carpathian Foredeep in Moravia (Czech Republic). Geol Carpath 59:133–146

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. AAPG Mem 1:108–121

  • Embry AF, Klovan JE (1972) Absolute water depth limits of Late Devonian paleoecological zones. Geol Rundsch 61:672–686

    Article  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks, analysis, interpretation and application. Springer, Berlin Heidelberg New York, p 976

    Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667

    Article  Google Scholar 

  • Hageman SJ, Bone Y, McGowran B, James NP (1997) Bryozoan colonial growth-forms as paleoenvironemental indicators: evaluation of methodology. Palaios 12:405–419

    Article  Google Scholar 

  • Hageman SJ, Bock PE, Bone Y, McGowran B (1998) Bryozoan growth habits: classification and analysis. J Paleontol 72:418–436

    Google Scholar 

  • Hageman SJ, James NP, Bone Y (2000) Cool-water carbonate production from epizoic bryozoans on ephemeral substrates. Palaios 15:33–48

    Article  Google Scholar 

  • Hajek-Tadesse V (2006) Miocene ostracodes of Northern Croatia—in Croatian. Unpublished PhD thesis, University of Zagreb, p 179

  • Hansen HJ, Müller C, Rögl F (1987) Paleobathymetry of Middle Miocene (Badenian) marine deposits at the Weissenegg quarry (Styrian Basin, Austria). Ann Naturhist Mus Wien 89:15–36

    Google Scholar 

  • Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—Palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Paleoecol 253:8–31

    Article  Google Scholar 

  • Hayward PJ, McKinney FK (2002) Northern Adriatic bryozoan from the vicinity of Rovinj, Croatia. Bull Am Mus Nat Hist 270:1–139

    Article  Google Scholar 

  • Hohenegger J (1995) Depth estimation by proportions of living larger foraminifera. Mar Micropalentol 26:31–47

    Article  Google Scholar 

  • Hohenegger J, Yordanova E, Nakano Y, Tatzreiter F (1999) Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Mar Micropaleontol 36:109–168

    Article  Google Scholar 

  • Holcová K (2008) Foraminiferal species diversity in the Central Paratethys—a reflection of global or local events? Geol Carpath 59:71–85

    Google Scholar 

  • Holcová K, Zágoršek K (2008) Bryozoa, foraminifera and calcareous nannoplankton as environmental proxies of the “bryozoan event” in the Middle Miocene of the Central Paratethys (Czech Republic). Palaeogeogr Palaeoclimatol Paleoecol 267:216–234

    Article  Google Scholar 

  • James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke JAD (eds) Cool-water carbonates. SEPM Spec Publ 56:1–20

  • Key MM Jr, Zágoršek K, Patterson WP (2012) Paleoenvironmental reconstruction of the Early to Middle Miocene Central Paratethys using stable isotopes from bryozoan skeletons. Int J Earth Sci (Geol Rundsch), doi:10.1007/s00531-012-0786-z

  • Kochansky V (1944) Fauna of marine Miocene of southern flanks of the Medvednica Mt. and the Zagrebačka gora Mt.—in Croatian and German. Vjestnik Hrvatskog državnog geološkog zavoda i Hrvatskog državnog geološkog muzeja 2/3:171–272

  • Kováč M, Andreyeva-Grigorovich A, Bajraktarević Z, Brzobohatý R, Filipescu S, Fodor L, Harzhauser M, Nagymarosy A, Oszczypko N, Pavelić D, Rögl F, Saftić B, Sliva L, Studencka B (2007) Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geol Carpath 58:579–606

    Google Scholar 

  • Kroeger KF, Reuter M, Brachert TC (2006) Palaeoenvironmental reconstruction based on non-geniculate coralline red algal assemblages in Miocene limestone of central Crete. Facies 52:381–409

    Article  Google Scholar 

  • Kroh A (2007) Climate changes in the Early to Middle Miocene of the Central Paratethys and the origin of its echinoderm fauna. Palaeogeogr Palaeoclimatol Paleoecol 253:169–207

    Article  Google Scholar 

  • Kroh A, Piller WE (2005) Catalogus Fossilium Austriae. Ein systematisches Verzeichnis aller auf österreichischem Gebeit festgestellten Fossilien. Band 2. Echinoidea neogenica. Verlag der Österreichischen Akademie der Wissenschaften, Wien, p 210

    Google Scholar 

  • Lagaaij R, Gautier YV (1965) Bryozoan assemblages from marine sediments of the Rhône delta, France. Micropaleontology 11:39–58

    Article  Google Scholar 

  • Langer MR, Hottinger L (2000) Biogeography of selected “larger” foraminifera. Micropaleontology 46:105–126

    Google Scholar 

  • Lees A, Buller AT (1972) Modern temperate-water and warm-water carbonate sediments contrasted. Mar Geol 13:M67–M73

    Article  Google Scholar 

  • Leszczyński S, Kołodziej B, Bassi D, Malata E, Gasiński MA (2012) Origin and resedimentation of rhodoliths in the Late Paleocene flysch of the Polish Outer Carpathians. Facies 58:367–387

    Article  Google Scholar 

  • Loeblich AR, Tappan H (1988a) Foraminiferal genera and their classification. Van Nostrand Reinhold, New York, p 970

    Google Scholar 

  • Loeblich AR, Tappan H (1988b) Foraminiferal genera and their classification—Plates. Van Nostrand Reinhold, New York, p 212, 847 Tab

  • Lund M, Davies PJ, Braga JC (2000) Coralline algal nodules off Fraser Island, Eastern Australia. Facies 42:25–34

    Article  Google Scholar 

  • McKinney FK, Jaklin A (2001) Sediment accumulation in a shallow-water meadow carpeted by small erect bryozoan. Sediment Geol 145:397–410

    Article  Google Scholar 

  • Mikša G, Mezga A (2010) Taphonomic selection among echinoids or why is Clypeaster the most abundant echinoid in the Miocene of Croatia. Abstract Book, 4th Croatian Geological Congress, Šibenik 2010. Institute of Geology, Zagreb, pp 95–96

  • Mitrović-Petrović J (1969) Middle Miocene echinoids of Northern Bosnia (Bosanska Posavina). Acta Geol 63:113–146

    Google Scholar 

  • Moissette P, Dulai A, Müller P (2006) Bryozoan faunas in the Middle Miocene of Hungary: biodiversity and biogeography. Palaeogeogr Palaeoclimatol Paleoecol 233:300–314

    Article  Google Scholar 

  • Moissette P, Dulai A, Escarguel G, Kázmér M, Müller P, Saint Martin J-P (2007) Mosaic of environments by bryozoan faunas from the Middle Miocene of Hungary. Palaeogeogr Palaeoclimatol Paleoecol 252:530–556

    Article  Google Scholar 

  • Moore RC, Pitrat CW (1961) Treatise on Invertebrate Paleontology, Part Q: Crustacea. Ostracoda. GSA and University of Kansas Press, Kanzas, p 442

    Google Scholar 

  • Nalin R, Nelson CS, Basso D, Massari F (2008) Rhodolith-bearing limestones as transgressive marker beds: fossil and modern examples from North Island, New Zealand. Sedimentology 55:249–274

    Article  Google Scholar 

  • Nebelsick JH (1989) Temperate water carbonate facies of the Early Miocene Paratethys (Zogelsdorf Formation, Lower Austria). Facies 21:11–40

    Article  Google Scholar 

  • Nelson CS (1988) An introductory perspective on non-tropical shelf carbonates. Sediment Geol 60:3–12

    Article  Google Scholar 

  • Novosel M (2005) Bryozoans of the Adriatic Sea. In: Wöss E (ed) Moostiere (Bryozoa). Linz, Land Oberosterreich, pp 231–246

    Google Scholar 

  • Odin GS, Fullagar PD (1988) Geological significance of the glaucony facies. In: Odin GS (ed) Green Marine Clays. Developments in Sedimentology 45. Elsevier, Amsterdam, pp 295–332

  • Oertli HJ (1971) The aspect of ostracode faunas—a possible new tool in petroleum sedimentology. Bull Centre Rech Pau—SNPA 5:137–151

    Google Scholar 

  • Papp A, Schmid ME (1985) Die fossilen Foraminiferen des tertiären Beckens von Wien (The Fossil Foraminifera of the Tertiary Basin of Vienna). Revision der Monographie von ALCIDE d’ORBIGNY (1846). Abh Geol Bundesanst 37:1–311

    Google Scholar 

  • Pavelić D (2001) Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Res 12:359–376

    Article  Google Scholar 

  • Pavelić D, Avanić R, Kovačić M, Vrsaljko D, Miknić M (2003) An outline of the evolution of the croatian part of the Pannonian Basin System. In: Vlahović I, Tišljar J (eds) Field trip guidebook: evolution of depositional environments from the Palaeozoic to the quaternary in the Karst Dinarides and the Pannonian Basin. 22nd IAS meeting of sedimentology. Institute of Geology, Zagreb, pp 155–161

  • Perch-Nielsen K (1985) Cenozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 427–554

    Google Scholar 

  • Pikija M (1987a) Osnovna geološka karta SFRJ 1:100.000. List Sisak L 33–93 (Basic geological map of SFRY 1:100.000. The Sisak sheet). Geological Institute Zagreb (1975–1986), State Geological Institute Beograd

  • Pikija M (1987b) Osnovna geološka karta SFRJ 1:100.000. Tumač za list Sisak L 33–93 (Basic Geological Map of SFRY 1:100.000. Geology of Sisak sheet) Geological Institute Zagreb (1986), State Geological Institute Beograd, p 51

  • Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168

    Google Scholar 

  • Poljak J (1938) Prilog poznavanju miocenskih Echinoidea Hrvatske i Slavonije—in Croatian. Vesnik Geološkog instituta kraljevine Jugoslavije 7:167–203

    Google Scholar 

  • Pomar L, Brandano M, Westphal H (2004) Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterranean. Sedimentology 51:627–651

    Article  Google Scholar 

  • Pomoni-Papaioannou F, Drinia H, Dermitzakis MD (2002) Neogene non-tropical carbonate sedimentation in a warm temperate biogeographic province (Rethymnon Formation, Eastern Crete, Greece). Sediment Geol 154:147–157

    Article  Google Scholar 

  • Postuma JA (1971) Manual of Planktonic Foraminifera. Royal Dutch/Shell Group, The Hague. The Netherlands, Elsevier, p 420

    Google Scholar 

  • Pouyet S, Tarkowski R (1998) Les bryozoaires Cheilostomes du Miocène d’Olimpow (Pologne, Paratéthys Centrale). Geobios 31:39–45

    Article  Google Scholar 

  • Randazzo AF, Müller P, Lelkes G, Juhász E, Hámor T (1999) Cool-water limestones of the Pannonian basinal system, Middle Miocene. Hungary. J Sediment Res 69(1):283–293

    Article  Google Scholar 

  • Rasser MW (2000) Coralline red algal limestones of the Late Eocene Alpine Foreland Basin in Upper Austria: component analysis, facies and paleoecology. Facies 42:59–92

    Article  Google Scholar 

  • Rasser MW, Nebelsick JH (2003) Provenance analysis of Oligocene autochthonous and allochthonous coralline algae: a quantative approach towards reconstructing transported assemblages. Palaeogeogr Palaeoclimatol Paleoecol 201:89–111

    Article  Google Scholar 

  • Rasser MW, Piller WE (2004) Crustose algal frameworks from the Eocene Alpine Foreland. Palaeogeogr Palaeoclimatol Paleoecol 206:21–39

    Article  Google Scholar 

  • Rögl F (1998) Palaeogeographic considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann Naturhist Mus Wien 99A:279–310

    Google Scholar 

  • Rögl F (1999) Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol Carpath 50:339–349

    Google Scholar 

  • Rossignol L, Frédérique E, Julien B, Sébastien Z, Christophe F, Ellouz-Zimmermann N, Valentine L (2011) High occurrence of Orbulina suturalis and “Praeorbulina-like specimens” in sediments of the northern Arabian Sea during the Last Glacial Maximum. Mar Micropaleontol 79:100–113

    Article  Google Scholar 

  • Schopf TJM (1969) Paleoecology of ectoprocts (bryozoans). J Paleontol 43:234–244

    Google Scholar 

  • Sczcechura J (2006) Middle Miocene (Badenian) ostracods and green algae (Chlorophyta) from Kamienica Nawojowska, Nowy Sącz Basin (Western Carpathians, Poland). Geol Carpath 57:103–122

    Google Scholar 

  • Smith AM, Nelson CS (1994) Selectivity in sea-floor processes: taphonomy of bryozoans. In: Hayward PJ, Ryland JS, Taylor PD (eds) Biology and palaeobiology of Bryozoans. Proceedings of the 9th international bryozoology conference, Swansea, 1992. Olsen & Olsen, Fredensborg, pp 177–180

  • Srinivinsan MS (1975) Middle Miocene planktonic foraminifera from the Hut Bay formation, Little Andaman Island, Bay of Bengal. Micropaleontology 21:133–150

    Article  Google Scholar 

  • Toscano F, Sorgente B (2002) Rhodalgal-Bryomol temperate carbonates from the Apulian shelf (Southeastern Italy), relict and modern deposits on a current dominated shelf. Facies 46:103–118

    Article  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publication, Oxford, p 482

    Book  Google Scholar 

  • Tunoglu C, Bilen C (2001) Burdigalian–Langhian (Miocene) ostracod biostratigraphy and chronostratigraphy of the Kasaba Basin (Kaş/Antalya), SW Turkey. Geol Carpath 52:247–258

    Google Scholar 

  • Vavra N (1981) Bryozoa from the Eggenburgian (Lower Miocene, Central Paratethys) of Austria. In: Larwood GP, Nielsen C (eds) Recent and fossil bryozoa. Papers presented at the 5th international conference on Bryozoa, Durham, 1980. Olsen&Olsen, Fredensborg, pp 273–280

  • Vavra N (2005) Känozoische Bryozoenfaunen Österreichs. In: Wöss E (ed) Moostiere (Bryozoa). Linz, Land Oberosterreich, pp 75–94

    Google Scholar 

  • Vlahović I, Tišljar J, Velić I, Matičec D (2005) Evolution of the Adriatic carbonate platform: palaeogeography, main events and depositional dynamics. Palaeogeogr Palaeoclimatol Paleoecol 220:333–360

    Article  Google Scholar 

  • Vrsaljko D, Pavelić D, Miknić M, Brkić M, Kovačić M, Hećimović I, Hajek-Tadesse V, Avanić R, Kurtanjek N (2006) Middle Miocene (Upper Badenian/Sarmatian) palaeoecology and evolution of the environments in the area of Medvednica Mt. (North Croatia). Geol Croat 59:51–63

    Google Scholar 

  • Wilson MEJ, Vecsei A (2005) The apparent paradox of abundant foramol facies in low latitudes: their environmental significance and effect on platform development. Earth Sci Rev 69:133–168

    Article  Google Scholar 

  • Zabala M, Maluquer P (1988) Illustrated keys for the classification of Mediterranean Bryozoa. Treb Mus Zool Barcelona 4:1–294

    Google Scholar 

  • Zàgoršek K (2010a) Bryozoa from the Langhian (Miocene) of the Czech Republic. Part I: Geology of the studied sections, systematic description of the orders Cyclostomata, Ctenostomata, and “Anascan” Cheilostomata (Suborders Malacostega Levinsen, 1902 and Flustrina Smitt, 1868). Acta Musei Nationalis Pragae Series B—Historia Naturalis 66 (1–2):3–136

    Google Scholar 

  • Zàgoršek K (2010b) Bryozoa from the Langhian (Miocene) of the Czech Republic. Part II: Systematic description of the suborder Ascophora Levinsen, 1909 and paleoecological reconstruction of the studied paleoenvironment. Acta Musei Nationalis Pragae Series B—Historia Naturalis 66 (3–4):139–255

    Google Scholar 

  • Zàgoršek K, Holcovà K, Třasoň T (2008) Bryozoan event from Middle Miocene (Early Badenian) lower neritic sediments from the locality Kralice nad Oslavou (Central Paratethys, Moravian part of the Carpathian Foredeep). Int J Earth Sci 97:835–850

    Article  Google Scholar 

  • Zàgoršek K, Holcovà K, Nehyba S, Kroh A, Hladilovà Š (2009) The invertebrate fauna of the Middle Miocene (Lower Badenian) sediments of Kralice nad Oslavou (Central Paratethys, Moravian part of the Carpathian Foredeep). Bull Geosci 84:465–496

    Article  Google Scholar 

  • Zàgoršek K, Filipescu S, Holcovà K (2010) New Middle Miocene bryozoan from Gârbova de Sus (Romania) and their relationship to the sedimentary environment. Geol Carpath 61:495–512

    Google Scholar 

  • Ziko A, Hamza FH, El-Safori Y (1994) Palaeoecology and Palaeobiogeography of the Miocene bryozoans from the western part of the Clysmic area, Egypt. In: Hayward PJ, Ryland JS, Taylor PD (eds) Biology and palaeobiology of Bryozoans. Proceedings of the 9th international Bryozoology conference, pp 227–231

  • Zorn I (2004) Ostracoda from the Lower Badenian (Middle Miocene) Grund formation (Molasse basin, Lower Austria). Geol Carpath 55:179–189

    Google Scholar 

  • Zuschin M, Harzhauser M, Mandic O (2007) The stratigraphic and sedimentologic framework of fine-scale faunal replacements in the Middle Miocene of the Vienna Basin (Austria). Palaios 22:285–295

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Science, Education and Sports of the Republic of Croatia (Project no. 119-1951293-1162). We thank Milan Miljuš for showing us the locality; Nikola Šoić for help in the field work; Danica Miletić for help in determinations of planktonic foraminifera; Valentina Hajek-Tadesse for help in determining ostracod fauna, and Maja Novosel for literature on bryozoan fauna. We are thankful to Jasenka Sremac for reading the manuscript and useful suggestions, which improved the text and Duje Kukoč from the Ivan Rakovec Institute of Palaeontology in Ljubljana for providing us the SEM pictures of bryozoans. The very constructive and helpful reviews of Maurice Tucker, Co-Editor-in-Chief, and anonymous reviewers are greatly appreciated and significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Martinuš.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martinuš, M., Fio, K., Pikelj, K. et al. Middle Miocene warm-temperate carbonates of Central Paratethys (Mt. Zrinska Gora, Croatia): paleoenvironmental reconstruction based on bryozoans, coralline red algae, foraminifera, and calcareous nannoplankton. Facies 59, 481–504 (2013). https://doi.org/10.1007/s10347-012-0327-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-012-0327-z

Keywords

  • Warm-temperate carbonates
  • Bryozoans
  • Coralline red algae
  • Benthic foraminifera
  • Calcareous nannoplankton
  • Middle Miocene
  • Central Paratethys
  • Croatia