, Volume 59, Issue 3, pp 481–504 | Cite as

Middle Miocene warm-temperate carbonates of Central Paratethys (Mt. Zrinska Gora, Croatia): paleoenvironmental reconstruction based on bryozoans, coralline red algae, foraminifera, and calcareous nannoplankton

  • Maja MartinušEmail author
  • Karmen Fio
  • Kristina Pikelj
  • Šimun Aščić
Original Article


Carbonate deposits from Zrin in the Mt. Zrinska Gora were deposited in the SW part of the Central Paratethys Sea during the Middle Badenian (Middle Miocene). The studied section contains a rich fossil community of non-geniculate coralline red algae (Subfamily Melobesioideae), bryozoans, benthic and planktonic foraminifera, echinoderms, ostracods, molluscs, and calcareous nannoplankton. Based on lithological variations and changes in the biogenic components, four facies associations (FA) are distinguished. Their distribution points to skeletal production and sedimentation on a middle to proximal outer carbonate ramp. The main lithological feature of the section is an alternation of two lithofacies: fully lithified grainstone–rudstone and packstone, and semi-lithified rudstone–floatstone with a carbonate sandy matrix. Depositional environments on the ramp were periodically influenced by minor high-frequency sea-level changes and/or changes of hydrodynamic conditions, which are suggested as the driving mechanisms causing the alternation of the two lithofacies. Vertically in the succession, the two lithofacies alternate to give three thinning- and fining-upward units. The lower part of each unit is formed of a rhodolith and coralline algal FA, which passes upwards into a bryozoan-coralline algal FA and/or FA of bioclastic packstone-grainstone. Based on the vertical upward change in FAs, each unit can be interpreted as a deepening-upward sequence. Patterns in the relative abundance of bryozoan colony growth form (vinculariiform, cellariiform, adeoniform, membraniporiform, celleporiform, and reteporiform), size and abundance of rhodoliths and coralline branches, and benthic foraminifera are interpreted by comparison with data from modern and fossil environments. Based on these data, a water depth range for each FA is interpreted, providing evidence of low-frequency relative sea-level changes. It is hypothesized that relative sea-level fluctuated in the water depth range from 30 to 80 m, and in the uppermost part of the section, rich in planktonic foraminifera and calcareous nannoplankton, possibly deeper. Causes of the low-frequency relative sea-level fluctuations and the general deepening trend observed within the succession cannot be interpreted based on one section; however, they may be related to the subsidence of the depositional basin. The benthic biotic communities are a vertical alternation of rhodalgal and bryorhodalgal associations, and this is attributed to relative sea-level fluctuations. These biotic associations gave rise to warm-temperate carbonates of the Middle Badenian N9 planktonic Zone (Orbulina suturalis, O. universa) and NN4–NN5 nannoplankton Zones (Sphenolithus heteromorphus).


Warm-temperate carbonates Bryozoans Coralline red algae Benthic foraminifera Calcareous nannoplankton Middle Miocene Central Paratethys Croatia 



This research was financially supported by the Ministry of Science, Education and Sports of the Republic of Croatia (Project no. 119-1951293-1162). We thank Milan Miljuš for showing us the locality; Nikola Šoić for help in the field work; Danica Miletić for help in determinations of planktonic foraminifera; Valentina Hajek-Tadesse for help in determining ostracod fauna, and Maja Novosel for literature on bryozoan fauna. We are thankful to Jasenka Sremac for reading the manuscript and useful suggestions, which improved the text and Duje Kukoč from the Ivan Rakovec Institute of Palaeontology in Ljubljana for providing us the SEM pictures of bryozoans. The very constructive and helpful reviews of Maurice Tucker, Co-Editor-in-Chief, and anonymous reviewers are greatly appreciated and significantly improved the manuscript.


  1. Adey WH, Townsend RA, Boykins WT (1982) The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithson Contrib Mar Sci 15:1–74CrossRefGoogle Scholar
  2. Agip SpA (1982) Foraminiferi Padani (Tercziaro e Quateriniario). Atlante iconografico e distribuzione stratigrafica. 2da edizione. Agip SpA, San Donato Milanese, 52 TabGoogle Scholar
  3. Avanić R (1997) Facies analysis of Middle Miocene on southern slopes of Mt. Medvednica—in Croatian. Unpublished MSc thesis, University of Zagreb, p 54Google Scholar
  4. Bartol M (2009) Middle Miocene calcareous nannoplankton of NE Slovenia (western Central Paratethys). Paleontološki inštitut Ivana Rakovca ZRC SAZU, Ljubljana, p 136Google Scholar
  5. Bassi D, Nebelsick JH (2010) Components, facies and ramps: redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeogr Palaeoclimatol Paleoecol 295:258–280CrossRefGoogle Scholar
  6. Bassi D, Nebelsick JH, Checconi A, Hohenegger J, Iryu Y (2009) Present-day and fossil rhodoliths pavements compared: their potential for analysing shallow-water carbonate deposits. Sed Geol 214:74–84CrossRefGoogle Scholar
  7. Basso D (1998) Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeogr Palaeoclimatol Paleoecol 137:173–187CrossRefGoogle Scholar
  8. Basso D, Brusoni F (2004) The molluscan assemblage of a transitional environment: the Mediterranean maërl from off the Elba Island (Tuscan Archipelago, Tyrrhenian Sea). Boll Malacol 40:37–45Google Scholar
  9. Basso D, Vrsaljko D, Grgasović T (2008) The coralline flora of a Miocene maërl: the Croatian “Litavac”. Geol Croat 61(2–3):333–340Google Scholar
  10. Berning B (2006) The cheilostome bryozoan fauna from the Late Miocene of Niebla (Guadalquivir Basin, SW Spain): environmental and biogeographic implications. Mitt Geol-Paläont Inst Univ Hamburg 90:7–156Google Scholar
  11. Bicchi E, Ferrero E, Gonera M (2003) Palaeoclimatic interpretation based on Middle Miocene planktonic Foraminifera: the Silesia Basin (Paratethys) and Monferrato (Tethys) records. Palaeogeogr Palaeoclimatol Paleoecol 196:265–303CrossRefGoogle Scholar
  12. Blow WH (1969) Late Middle Eocene to recent planktonic foraminiferal biostratigraphy. In: Brönnimann P, Renz HH (eds) Proceedings of the first international conference on planktonic microfossils. Leiden E. J. Brill 1:199–421 (in Srinivinsan MS, 1975)Google Scholar
  13. Boardman RS (1998) Reflections on the morphology, anatomy, evolution, and classification of the Class Stenolaemata (Bryozoa). Smithson Contrib Paleobiol 86:1–59CrossRefGoogle Scholar
  14. Bosellini A, Ginsburg RN (1971) Form and internal structure of recent algal nodules (rhodolites) from Bermuda. J Geol 79:669–682CrossRefGoogle Scholar
  15. Bosence DWJ (1983a) Description and classification of rhodoliths (rhodoids, rhodolites). In: Preyt TM (ed) Coated grains. Springer, Berlin, pp 217–224CrossRefGoogle Scholar
  16. Bosence DWJ (1983b) The occurrence and ecology of recent rhodoliths—a review. In: Preyt TM (ed) Coated grains. Springer, Berlin, pp 225–242CrossRefGoogle Scholar
  17. Bosence D, Wilson J (2003) Maerl growth, carbonate production rates and accumulation rates in the northeast Atlantic. Aquatic Conserv Mar Freshw Ecosyst 13:S21–S31CrossRefGoogle Scholar
  18. Braga JC, Aguirre J (2001) Coralline algal assemblages in upper Neogene reef and temperate carbonates in southern Spain. Palaeogeogr Palaeoclimatol Paleoecol 175:27–41CrossRefGoogle Scholar
  19. Braga JC, Aguirre J (2004) Coralline algae indicate Pleistocene evolution from deep, open platform to outer barrier environments in the northern Great Barrier Reef margin. Coral Reefs 23:547–558Google Scholar
  20. Brandano M (2002) La Formazione dei “Calcari a Briozoi e Litotamni” nell′area di Tagliacozzo (Apennino Centrale): e considerazioni paleoambientali sulle facies rodalgali. Boll Soc Geol It 121:179–186Google Scholar
  21. Brandano M, Vannucci G, Pomar L, Obrador A (2005) Rhodolith assemblages from the Lower Tortonian carbonate ramp of Menorca (Spain): environmental and paleoclimatic implications. Palaeogeogr Palaeoclimatol Paleoecol 226:307–323CrossRefGoogle Scholar
  22. Brkić M (1966) Miocene fossils from the Dvor on Una area—in Croatian. Unpublished BSc thesis, University of Zagreb, p 40Google Scholar
  23. Carannante G, Esteban M, Milliman JD, Simone L (1988) Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sediment Geol 60:333–346CrossRefGoogle Scholar
  24. Ćorić S, Rögl F (2004) Roggendorf–1 borehole, a key-section for Lower Badenian transgressions and the stratigraphic position of the Grund formation (Molasse Basin, Lower Austria). Geol Carpath 55:165–178Google Scholar
  25. Ćorić S, Pavelić D, Rögl F, Mandic O, Vrabac S, Avanić R, Jerković L, Vranjković A (2009) Revised Middle Miocene datum for initial marine flooding of North Croatian Basins (Pannonian Basin System, Central Paratethys). Geol Croat 62:31–43Google Scholar
  26. Ćurčić SM (1898) Zrinjsko–dvorska neogenterciarna kotlina—in Croatian. Rad—Yugosl Acad Sci Arts 87:1–124Google Scholar
  27. Dolàkovà N, Brzobohatý R, Hladilovà Š, Nehyba S (2008) The red-algal facies of the Lower Badenian limestones of the Carpathian Foredeep in Moravia (Czech Republic). Geol Carpath 59:133–146Google Scholar
  28. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. AAPG Mem 1:108–121Google Scholar
  29. Embry AF, Klovan JE (1972) Absolute water depth limits of Late Devonian paleoecological zones. Geol Rundsch 61:672–686CrossRefGoogle Scholar
  30. Flügel E (2004) Microfacies of carbonate rocks, analysis, interpretation and application. Springer, Berlin Heidelberg New York, p 976Google Scholar
  31. Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667CrossRefGoogle Scholar
  32. Hageman SJ, Bone Y, McGowran B, James NP (1997) Bryozoan colonial growth-forms as paleoenvironemental indicators: evaluation of methodology. Palaios 12:405–419CrossRefGoogle Scholar
  33. Hageman SJ, Bock PE, Bone Y, McGowran B (1998) Bryozoan growth habits: classification and analysis. J Paleontol 72:418–436Google Scholar
  34. Hageman SJ, James NP, Bone Y (2000) Cool-water carbonate production from epizoic bryozoans on ephemeral substrates. Palaios 15:33–48CrossRefGoogle Scholar
  35. Hajek-Tadesse V (2006) Miocene ostracodes of Northern Croatia—in Croatian. Unpublished PhD thesis, University of Zagreb, p 179Google Scholar
  36. Hansen HJ, Müller C, Rögl F (1987) Paleobathymetry of Middle Miocene (Badenian) marine deposits at the Weissenegg quarry (Styrian Basin, Austria). Ann Naturhist Mus Wien 89:15–36Google Scholar
  37. Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—Palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Paleoecol 253:8–31CrossRefGoogle Scholar
  38. Hayward PJ, McKinney FK (2002) Northern Adriatic bryozoan from the vicinity of Rovinj, Croatia. Bull Am Mus Nat Hist 270:1–139CrossRefGoogle Scholar
  39. Hohenegger J (1995) Depth estimation by proportions of living larger foraminifera. Mar Micropalentol 26:31–47CrossRefGoogle Scholar
  40. Hohenegger J, Yordanova E, Nakano Y, Tatzreiter F (1999) Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Mar Micropaleontol 36:109–168CrossRefGoogle Scholar
  41. Holcová K (2008) Foraminiferal species diversity in the Central Paratethys—a reflection of global or local events? Geol Carpath 59:71–85Google Scholar
  42. Holcová K, Zágoršek K (2008) Bryozoa, foraminifera and calcareous nannoplankton as environmental proxies of the “bryozoan event” in the Middle Miocene of the Central Paratethys (Czech Republic). Palaeogeogr Palaeoclimatol Paleoecol 267:216–234CrossRefGoogle Scholar
  43. James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke JAD (eds) Cool-water carbonates. SEPM Spec Publ 56:1–20Google Scholar
  44. Key MM Jr, Zágoršek K, Patterson WP (2012) Paleoenvironmental reconstruction of the Early to Middle Miocene Central Paratethys using stable isotopes from bryozoan skeletons. Int J Earth Sci (Geol Rundsch), doi: 10.1007/s00531-012-0786-z
  45. Kochansky V (1944) Fauna of marine Miocene of southern flanks of the Medvednica Mt. and the Zagrebačka gora Mt.—in Croatian and German. Vjestnik Hrvatskog državnog geološkog zavoda i Hrvatskog državnog geološkog muzeja 2/3:171–272Google Scholar
  46. Kováč M, Andreyeva-Grigorovich A, Bajraktarević Z, Brzobohatý R, Filipescu S, Fodor L, Harzhauser M, Nagymarosy A, Oszczypko N, Pavelić D, Rögl F, Saftić B, Sliva L, Studencka B (2007) Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geol Carpath 58:579–606Google Scholar
  47. Kroeger KF, Reuter M, Brachert TC (2006) Palaeoenvironmental reconstruction based on non-geniculate coralline red algal assemblages in Miocene limestone of central Crete. Facies 52:381–409CrossRefGoogle Scholar
  48. Kroh A (2007) Climate changes in the Early to Middle Miocene of the Central Paratethys and the origin of its echinoderm fauna. Palaeogeogr Palaeoclimatol Paleoecol 253:169–207CrossRefGoogle Scholar
  49. Kroh A, Piller WE (2005) Catalogus Fossilium Austriae. Ein systematisches Verzeichnis aller auf österreichischem Gebeit festgestellten Fossilien. Band 2. Echinoidea neogenica. Verlag der Österreichischen Akademie der Wissenschaften, Wien, p 210Google Scholar
  50. Lagaaij R, Gautier YV (1965) Bryozoan assemblages from marine sediments of the Rhône delta, France. Micropaleontology 11:39–58CrossRefGoogle Scholar
  51. Langer MR, Hottinger L (2000) Biogeography of selected “larger” foraminifera. Micropaleontology 46:105–126Google Scholar
  52. Lees A, Buller AT (1972) Modern temperate-water and warm-water carbonate sediments contrasted. Mar Geol 13:M67–M73CrossRefGoogle Scholar
  53. Leszczyński S, Kołodziej B, Bassi D, Malata E, Gasiński MA (2012) Origin and resedimentation of rhodoliths in the Late Paleocene flysch of the Polish Outer Carpathians. Facies 58:367–387CrossRefGoogle Scholar
  54. Loeblich AR, Tappan H (1988a) Foraminiferal genera and their classification. Van Nostrand Reinhold, New York, p 970Google Scholar
  55. Loeblich AR, Tappan H (1988b) Foraminiferal genera and their classification—Plates. Van Nostrand Reinhold, New York, p 212, 847 TabGoogle Scholar
  56. Lund M, Davies PJ, Braga JC (2000) Coralline algal nodules off Fraser Island, Eastern Australia. Facies 42:25–34CrossRefGoogle Scholar
  57. McKinney FK, Jaklin A (2001) Sediment accumulation in a shallow-water meadow carpeted by small erect bryozoan. Sediment Geol 145:397–410CrossRefGoogle Scholar
  58. Mikša G, Mezga A (2010) Taphonomic selection among echinoids or why is Clypeaster the most abundant echinoid in the Miocene of Croatia. Abstract Book, 4th Croatian Geological Congress, Šibenik 2010. Institute of Geology, Zagreb, pp 95–96Google Scholar
  59. Mitrović-Petrović J (1969) Middle Miocene echinoids of Northern Bosnia (Bosanska Posavina). Acta Geol 63:113–146Google Scholar
  60. Moissette P, Dulai A, Müller P (2006) Bryozoan faunas in the Middle Miocene of Hungary: biodiversity and biogeography. Palaeogeogr Palaeoclimatol Paleoecol 233:300–314CrossRefGoogle Scholar
  61. Moissette P, Dulai A, Escarguel G, Kázmér M, Müller P, Saint Martin J-P (2007) Mosaic of environments by bryozoan faunas from the Middle Miocene of Hungary. Palaeogeogr Palaeoclimatol Paleoecol 252:530–556CrossRefGoogle Scholar
  62. Moore RC, Pitrat CW (1961) Treatise on Invertebrate Paleontology, Part Q: Crustacea. Ostracoda. GSA and University of Kansas Press, Kanzas, p 442Google Scholar
  63. Nalin R, Nelson CS, Basso D, Massari F (2008) Rhodolith-bearing limestones as transgressive marker beds: fossil and modern examples from North Island, New Zealand. Sedimentology 55:249–274CrossRefGoogle Scholar
  64. Nebelsick JH (1989) Temperate water carbonate facies of the Early Miocene Paratethys (Zogelsdorf Formation, Lower Austria). Facies 21:11–40CrossRefGoogle Scholar
  65. Nelson CS (1988) An introductory perspective on non-tropical shelf carbonates. Sediment Geol 60:3–12CrossRefGoogle Scholar
  66. Novosel M (2005) Bryozoans of the Adriatic Sea. In: Wöss E (ed) Moostiere (Bryozoa). Linz, Land Oberosterreich, pp 231–246Google Scholar
  67. Odin GS, Fullagar PD (1988) Geological significance of the glaucony facies. In: Odin GS (ed) Green Marine Clays. Developments in Sedimentology 45. Elsevier, Amsterdam, pp 295–332Google Scholar
  68. Oertli HJ (1971) The aspect of ostracode faunas—a possible new tool in petroleum sedimentology. Bull Centre Rech Pau—SNPA 5:137–151Google Scholar
  69. Papp A, Schmid ME (1985) Die fossilen Foraminiferen des tertiären Beckens von Wien (The Fossil Foraminifera of the Tertiary Basin of Vienna). Revision der Monographie von ALCIDE d’ORBIGNY (1846). Abh Geol Bundesanst 37:1–311Google Scholar
  70. Pavelić D (2001) Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Res 12:359–376CrossRefGoogle Scholar
  71. Pavelić D, Avanić R, Kovačić M, Vrsaljko D, Miknić M (2003) An outline of the evolution of the croatian part of the Pannonian Basin System. In: Vlahović I, Tišljar J (eds) Field trip guidebook: evolution of depositional environments from the Palaeozoic to the quaternary in the Karst Dinarides and the Pannonian Basin. 22nd IAS meeting of sedimentology. Institute of Geology, Zagreb, pp 155–161Google Scholar
  72. Perch-Nielsen K (1985) Cenozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 427–554Google Scholar
  73. Pikija M (1987a) Osnovna geološka karta SFRJ 1:100.000. List Sisak L 33–93 (Basic geological map of SFRY 1:100.000. The Sisak sheet). Geological Institute Zagreb (1975–1986), State Geological Institute BeogradGoogle Scholar
  74. Pikija M (1987b) Osnovna geološka karta SFRJ 1:100.000. Tumač za list Sisak L 33–93 (Basic Geological Map of SFRY 1:100.000. Geology of Sisak sheet) Geological Institute Zagreb (1986), State Geological Institute Beograd, p 51Google Scholar
  75. Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy—current status and future directions. Stratigraphy 4:151–168Google Scholar
  76. Poljak J (1938) Prilog poznavanju miocenskih Echinoidea Hrvatske i Slavonije—in Croatian. Vesnik Geološkog instituta kraljevine Jugoslavije 7:167–203Google Scholar
  77. Pomar L, Brandano M, Westphal H (2004) Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterranean. Sedimentology 51:627–651CrossRefGoogle Scholar
  78. Pomoni-Papaioannou F, Drinia H, Dermitzakis MD (2002) Neogene non-tropical carbonate sedimentation in a warm temperate biogeographic province (Rethymnon Formation, Eastern Crete, Greece). Sediment Geol 154:147–157CrossRefGoogle Scholar
  79. Postuma JA (1971) Manual of Planktonic Foraminifera. Royal Dutch/Shell Group, The Hague. The Netherlands, Elsevier, p 420Google Scholar
  80. Pouyet S, Tarkowski R (1998) Les bryozoaires Cheilostomes du Miocène d’Olimpow (Pologne, Paratéthys Centrale). Geobios 31:39–45CrossRefGoogle Scholar
  81. Randazzo AF, Müller P, Lelkes G, Juhász E, Hámor T (1999) Cool-water limestones of the Pannonian basinal system, Middle Miocene. Hungary. J Sediment Res 69(1):283–293CrossRefGoogle Scholar
  82. Rasser MW (2000) Coralline red algal limestones of the Late Eocene Alpine Foreland Basin in Upper Austria: component analysis, facies and paleoecology. Facies 42:59–92CrossRefGoogle Scholar
  83. Rasser MW, Nebelsick JH (2003) Provenance analysis of Oligocene autochthonous and allochthonous coralline algae: a quantative approach towards reconstructing transported assemblages. Palaeogeogr Palaeoclimatol Paleoecol 201:89–111CrossRefGoogle Scholar
  84. Rasser MW, Piller WE (2004) Crustose algal frameworks from the Eocene Alpine Foreland. Palaeogeogr Palaeoclimatol Paleoecol 206:21–39CrossRefGoogle Scholar
  85. Rögl F (1998) Palaeogeographic considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann Naturhist Mus Wien 99A:279–310Google Scholar
  86. Rögl F (1999) Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geol Carpath 50:339–349Google Scholar
  87. Rossignol L, Frédérique E, Julien B, Sébastien Z, Christophe F, Ellouz-Zimmermann N, Valentine L (2011) High occurrence of Orbulina suturalis and “Praeorbulina-like specimens” in sediments of the northern Arabian Sea during the Last Glacial Maximum. Mar Micropaleontol 79:100–113CrossRefGoogle Scholar
  88. Schopf TJM (1969) Paleoecology of ectoprocts (bryozoans). J Paleontol 43:234–244Google Scholar
  89. Sczcechura J (2006) Middle Miocene (Badenian) ostracods and green algae (Chlorophyta) from Kamienica Nawojowska, Nowy Sącz Basin (Western Carpathians, Poland). Geol Carpath 57:103–122Google Scholar
  90. Smith AM, Nelson CS (1994) Selectivity in sea-floor processes: taphonomy of bryozoans. In: Hayward PJ, Ryland JS, Taylor PD (eds) Biology and palaeobiology of Bryozoans. Proceedings of the 9th international bryozoology conference, Swansea, 1992. Olsen & Olsen, Fredensborg, pp 177–180Google Scholar
  91. Srinivinsan MS (1975) Middle Miocene planktonic foraminifera from the Hut Bay formation, Little Andaman Island, Bay of Bengal. Micropaleontology 21:133–150CrossRefGoogle Scholar
  92. Toscano F, Sorgente B (2002) Rhodalgal-Bryomol temperate carbonates from the Apulian shelf (Southeastern Italy), relict and modern deposits on a current dominated shelf. Facies 46:103–118CrossRefGoogle Scholar
  93. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publication, Oxford, p 482CrossRefGoogle Scholar
  94. Tunoglu C, Bilen C (2001) Burdigalian–Langhian (Miocene) ostracod biostratigraphy and chronostratigraphy of the Kasaba Basin (Kaş/Antalya), SW Turkey. Geol Carpath 52:247–258Google Scholar
  95. Vavra N (1981) Bryozoa from the Eggenburgian (Lower Miocene, Central Paratethys) of Austria. In: Larwood GP, Nielsen C (eds) Recent and fossil bryozoa. Papers presented at the 5th international conference on Bryozoa, Durham, 1980. Olsen&Olsen, Fredensborg, pp 273–280Google Scholar
  96. Vavra N (2005) Känozoische Bryozoenfaunen Österreichs. In: Wöss E (ed) Moostiere (Bryozoa). Linz, Land Oberosterreich, pp 75–94Google Scholar
  97. Vlahović I, Tišljar J, Velić I, Matičec D (2005) Evolution of the Adriatic carbonate platform: palaeogeography, main events and depositional dynamics. Palaeogeogr Palaeoclimatol Paleoecol 220:333–360CrossRefGoogle Scholar
  98. Vrsaljko D, Pavelić D, Miknić M, Brkić M, Kovačić M, Hećimović I, Hajek-Tadesse V, Avanić R, Kurtanjek N (2006) Middle Miocene (Upper Badenian/Sarmatian) palaeoecology and evolution of the environments in the area of Medvednica Mt. (North Croatia). Geol Croat 59:51–63Google Scholar
  99. Wilson MEJ, Vecsei A (2005) The apparent paradox of abundant foramol facies in low latitudes: their environmental significance and effect on platform development. Earth Sci Rev 69:133–168CrossRefGoogle Scholar
  100. Zabala M, Maluquer P (1988) Illustrated keys for the classification of Mediterranean Bryozoa. Treb Mus Zool Barcelona 4:1–294Google Scholar
  101. Zàgoršek K (2010a) Bryozoa from the Langhian (Miocene) of the Czech Republic. Part I: Geology of the studied sections, systematic description of the orders Cyclostomata, Ctenostomata, and “Anascan” Cheilostomata (Suborders Malacostega Levinsen, 1902 and Flustrina Smitt, 1868). Acta Musei Nationalis Pragae Series B—Historia Naturalis 66 (1–2):3–136Google Scholar
  102. Zàgoršek K (2010b) Bryozoa from the Langhian (Miocene) of the Czech Republic. Part II: Systematic description of the suborder Ascophora Levinsen, 1909 and paleoecological reconstruction of the studied paleoenvironment. Acta Musei Nationalis Pragae Series B—Historia Naturalis 66 (3–4):139–255Google Scholar
  103. Zàgoršek K, Holcovà K, Třasoň T (2008) Bryozoan event from Middle Miocene (Early Badenian) lower neritic sediments from the locality Kralice nad Oslavou (Central Paratethys, Moravian part of the Carpathian Foredeep). Int J Earth Sci 97:835–850CrossRefGoogle Scholar
  104. Zàgoršek K, Holcovà K, Nehyba S, Kroh A, Hladilovà Š (2009) The invertebrate fauna of the Middle Miocene (Lower Badenian) sediments of Kralice nad Oslavou (Central Paratethys, Moravian part of the Carpathian Foredeep). Bull Geosci 84:465–496CrossRefGoogle Scholar
  105. Zàgoršek K, Filipescu S, Holcovà K (2010) New Middle Miocene bryozoan from Gârbova de Sus (Romania) and their relationship to the sedimentary environment. Geol Carpath 61:495–512Google Scholar
  106. Ziko A, Hamza FH, El-Safori Y (1994) Palaeoecology and Palaeobiogeography of the Miocene bryozoans from the western part of the Clysmic area, Egypt. In: Hayward PJ, Ryland JS, Taylor PD (eds) Biology and palaeobiology of Bryozoans. Proceedings of the 9th international Bryozoology conference, pp 227–231Google Scholar
  107. Zorn I (2004) Ostracoda from the Lower Badenian (Middle Miocene) Grund formation (Molasse basin, Lower Austria). Geol Carpath 55:179–189Google Scholar
  108. Zuschin M, Harzhauser M, Mandic O (2007) The stratigraphic and sedimentologic framework of fine-scale faunal replacements in the Middle Miocene of the Vienna Basin (Austria). Palaios 22:285–295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Maja Martinuš
    • 1
    Email author
  • Karmen Fio
    • 1
  • Kristina Pikelj
    • 1
  • Šimun Aščić
    • 1
  1. 1.Department of Geology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations