Skip to main content

Advertisement

Log in

The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the eastern Adriatic Sea

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The scleractinian coral Cladocora caespitosa deserves a special place among the major carbonate bioconstructors of the Mediterranean Sea. Annual coral skeleton growth, coral calcification, and skeleton density of the colonial coral C. caespitosa taken from 25 locations in the eastern Adriatic Sea were analyzed and compared with annual sea surface temperatures (SST). The growth rates of the coral C. caespitosa from the 25 stations in the Adriatic Sea ranged from 1.92 to 4.19 mm per year, with higher growth rates of the investigated corallites in the southern part of the Adriatic Sea. These growth rates are similar to those measured in other areas of the Mediterranean Sea. The correlation between coral growth and sea temperatures in the Adriatic Sea is seen as follows: An X-radiograph analysis of coral growth in C. caespitosa colonies that are over 60 years old showed that higher growth rates of this coral coincided with a warmer period in the Mediterranean Sea. A positive significant correlation exists between corallite growth rates and SST and coral calcification and SST. A negative correlation exists between coral density and SST. Coral growth rates also showed a correlation with higher eutrophication caused by nearby fish farms, along with a greater depth of the investigated colonies and high bottom currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abel EF (1959) Zur Kenntnis der marinen Höhlenfauna unter besonderer Berücksichtigung der Anthozoen. Pubbl Staz Zool Napoli 30:1–94

    Google Scholar 

  • Aguirre J, Jiménez AP (1998) Fossil analogues of present-day Cladocora caespitosa coral banks: Sedimentary setting, dwelling community, and taphography (Late Pliocene, W Mediterranean). Coral Reefs 17:203–213

    Article  Google Scholar 

  • Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeletons. J Exp Mar Biol Ecol 167:91–108

    Article  Google Scholar 

  • Bernasconi MP, Corselli C, Carobene L (1997) A bank of the scleractinian coral Cladocora caespitosa in the Pleistocene of the Crati valley (Calabria, Southern Italy): growth versus environmental conditions. Boll Soc Paleont Ital 36:53–61

    Google Scholar 

  • Bessat F, Buiges D (2001) Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from south central Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 175:381–392

    Article  Google Scholar 

  • Bianchi CN (1997) Climate change and biological response in the marine benthos. Proc Ital Assoc Oceanol Limnol 12:3–20

    Google Scholar 

  • Bianchi CN (2002) Bioconstruction in marine ecosystems and Italian marine biology. Biol Mar Mediterr 8(1):112–130

    Google Scholar 

  • Bianchi CN, Morri C (1996) Ficopomatus ‘reefs’ in the Po River Delta (northern Adriatic): their constructional dynamics, biology, and influences on the brackish-water biota. PSZN I: Mar Ecol 17:51–66

    Article  Google Scholar 

  • Bianchi CN, Morri C (2004) Climate change and biological response in Mediterranean Sea ecosystems—a need for broad-scale and long-term research. Ocean Chall 13(2):32–36

    Google Scholar 

  • Buljan M, Špan A (1976) Hidrografska svojstva Mljetskih jezera i susjednog mora. Acta Adriat 6(12):1–224

    Google Scholar 

  • Carricart-Ganivet JP, Barnes DJ (2007) Densitometry from digitized images of X-radiographs: methodology for measurement of coral skeletal density. J Exp Mar Biol Ecol 344:67–72

    Article  Google Scholar 

  • Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian sea (NW Mediterranean), summer 1999. Ecol Lett 3:284–293

    Article  Google Scholar 

  • Cocito S, Ferdeghini F (2001) Carbonate standing stock and carbonate production of the bryozoan Pentapora fascialis in the north-western Mediterranean. Facies 45:25–30

    Article  Google Scholar 

  • Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci USA 106:6176–6181

    Article  Google Scholar 

  • Crabbe MJC (2008) Climate change, global warming and coral reefs: modelling the effects of temperature. Comput Biol Chem 32:311–314

    Article  Google Scholar 

  • Cushman-Roisin B, Gačić M, Poulain P-M, Artegiani A (2001) Physical oceanography of the Adriatic Sea. Kluwer, Dordrecht

    Google Scholar 

  • Fabricius K (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Poll Bull 50:125–146

    Article  Google Scholar 

  • Ferrier-Pagès C, Tambutté E, Zamoum T, Segonds N, Merle P-L, Bensoussan N, Allemand D, Garrabou J, Tambutté S (2009) Physiological response of the symbiotic gorgonian Eunicella singularis to a long-term temperature increase. J Exp Biol 212:3007–3015

    Article  Google Scholar 

  • Ferrier-Pagès C, Peirano A, Abbate M, Cocito S, Negri A, Rottier C, Riera P, Rodolfo-Metalpa R, Reynaud S (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr 56:1429–1438

    Article  Google Scholar 

  • Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001) Mass mortality event in red coral Corallium rubrum populations in the Provence region (NW Mediterranean). Mar Ecol Progr Ser 217:263–272

    Article  Google Scholar 

  • Garrabou J, Coma R, Bally M, Bensoussan N, Chevaldonné P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Lejeusne C, Linares C, Marschal C, Pérez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15:1090–1103

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Mattioli G, Pignotti E, Dubinsky Z, Zaccanti F (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnol Oceanogr 54:930–937

    Article  Google Scholar 

  • Highsmith RC (1979) Coral growth rates and environmental control of density banding. J Exp Mar Biol Ecol 37:105–125

    Article  Google Scholar 

  • Hoogenboom M, Beraud E, Ferrier-Pagès C (2010a) Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs 29:21–29

    Article  Google Scholar 

  • Hoogenboom M, Rodolfo-Metalpa R, Ferrier-Pagès C (2010b) Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J Exp Biol 213:2399–2409

    Article  Google Scholar 

  • Jacques TG, Marshal N, Pilson MEQ (1983) Experimental ecology of the temperate scleractinian coral Astrangia danae. II. Effects of temperature, light intensity and symbiosis with zooxanthellae on metabolic rate and calcification. Mar Biol 76:135–148

    Article  Google Scholar 

  • Kersting DK, Linares C (in press) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol. doi:10.1111/j.1439-0485.2011.00508.x

  • Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272

    Article  Google Scholar 

  • Kružić P (2002) Marine fauna of the Mljet National Park (Adriatic Sea, Croatia). 1. Anthozoa. Nat Croat 11:265–292

    Google Scholar 

  • Kružić P (2005) Ecology of the coral Cladocora caespitosa (Linnaeus, 1767) and its banks in the Adriatic Sea. Ph.D. thesis, University of Zagreb, Zagreb, 198 p

  • Kružić P, Benković L (2008) Bioconstructional features of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea (Croatia). Mar Ecol 29:125–139

    Article  Google Scholar 

  • Kružić P, Požar-Domac A (2002) Skeleton growth rates of coral bank of Cladocora caespitosa (Anthozoa, Scleractinia) in Lake Veliko Jezero (Mljet National Park). Period Biol 104:123–129

    Google Scholar 

  • Kružić P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536

    Article  Google Scholar 

  • Kružić P, Požar-Domac A (2007) Impact of tuna farming on the banks of the coral Cladocora caespitosa in the Adriatic Sea. Coral Reefs 26:665

    Article  Google Scholar 

  • Kružić P, Žuljević A, Nikolić V (2008) Spawning of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Southern Adriatic Sea. Coral Reefs 27:337–341

    Article  Google Scholar 

  • Kushmaro A, Rosenberg E, Fine M, Ben Haim Y, Loya Y (1998) Effect of temperature on bleaching of coral Oculina patagonica by Vibrio AK-1. Mar Ecol Progr Ser 171:131–137

    Article  Google Scholar 

  • Laborel J (1961) Sur un cas particulier de concrétionnement animal. Concrétionnement à Cladocora caespitosa (L.) dans le Golfe de Talante. Rapp P-V Réun Comm Int Explor Sci Mer 16:429–432

    Google Scholar 

  • Laborel J (1987) Marine biogenic constructions in the Mediterranean: a review. Sci Rep Port-Cros Natl Park 13:97–126

    Google Scholar 

  • Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 24:250–260

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1997) Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy seawater temperature and a background of variability against which to identify unnatural change. J Exp Mar Biol Ecol 211:29–67

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    Article  Google Scholar 

  • Montagna P, McCulloch M, Mazzoli C, Silenzi S, Odorico R (2007) The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean: high-resolution (~weekly) trace element systematics. Quat Sci Rev 26:441–462

    Article  Google Scholar 

  • Montagna P, Silenzi S, Devoti S, Mazzoli C, McCulloch M, Scicchitano G, Taviani M (2008) Climate reconstructions and monitoring in the Mediterranean Sea: a review on some recently discovered high-resolution marine archives. Rend Fis Acc Lincei 19:121–140

    Article  Google Scholar 

  • Morri C, Peirano A, Bianchi CN, Sassarini M (1994) Present-day bioconstructions of the hard coral, Cladocora caespitosa (L.) (Anthozoa, Scleractinia), in the eastern Ligurian Sea (NW Mediterranean). B. Biol Mar Medit 1:371–372

    Google Scholar 

  • Morri C, Peirano A, Bianchi CN (2001) Is the Mediterranean coral Cladocora caespitosa an indicator of climatic change? Arch Oceanogr Limnol 22:139–144

    Google Scholar 

  • Oliver Valls JA (1989) Développement de Cladocora caespitosa (Linné, 1767) en aquarium. Bull Inst Oceanogr Monaco 5:205–209

    Google Scholar 

  • Pax F, Müller I (1962) Die Anthozoenfauna der Adria. In: Fauna et Flora Adriatica. Institut za Oceanografiju i Ribarstvo, Split 343 p

  • Peirano A, Kružić P (2004) Growth comparison between Ligurian and Adriatic samples of the coral Cladocora caespitosa: first results. Biol Mar Medit 11:166–168

    Google Scholar 

  • Peirano A, Morri C, Mastronuzzi G, Bianchi CN (1998) The coral Cladocora caespitosa (Anthozoa, Scleractinia) as a bioherm builder in the Mediterranean Sea. Mem Descr Carta Geol d’It 52(1994):59–74

    Google Scholar 

  • Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Progr Ser 185:195–201

    Article  Google Scholar 

  • Peirano A, Morri C, Bianchi CN, Rodolfo-Metalpa R (2001) Biomass, carbonate standing stock and production of the Mediterranean coral Cladocora caespitosa (L.). Facies 44:75–80

    Article  Google Scholar 

  • Peirano A, Morri C, Bianchi CN, Aguirre J, Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orrú P (2004) The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Global Planet Change 40:195–200

    Article  Google Scholar 

  • Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005) Monthly variations in calix growth, polyp tissue and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409

    Article  Google Scholar 

  • Peirano A, Kružić P, Mastronuzzi G (2009) Growth of Mediterranean reef of Cladocora caespitosa (L.) in the Late Quaternary and climate inferences. Facies 55:325–333

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Peirano A, Morri C, Bianchi CN (1999) Coral calcification rates in the Mediterranean scleractinian coral Cladocora caespitosa (L. 1767). Proc Ital Assoc Oceanol Limnol 13:291–299

    Google Scholar 

  • Rodolfo-Metalpa R, Bianchi CN, Peirano A (2000) Coral mortality in NM Mediterranean. Coral Reefs 19:24

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2005) Tissue necrosis and mortality of the temperate coral Cladocora caespitosa. Ital J Zool 72:271–276

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Richard C, Allemand D, Ferrier-Pagès C (2006) Growth and photosynthesis of two Mediterranean corals, Cladocora caespitosa and Oculina patagonica, under normal and elevated temperatures. J Exp Biol 209:4546–4556

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Peirano A, Houlbrèque F, Abbate M, Ferrier-Pagès C (2008) Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa. Coral Reefs 27:17–25

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Martin S, Ferrier-Pagès C, Gattuso JP (2010) Response of the temperate coral Cladocora caespitosa to mid-and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso JP, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Change 1:308–312

    Article  Google Scholar 

  • Schiller C (1993a) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): I. D. Distribution and biometry. PSZNI Mar Ecol 14:205–219

    Article  Google Scholar 

  • Schiller C (1993b) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): II. E. Energy budget. PSZNI Mar Ecol 14:221–238

    Article  Google Scholar 

  • Scoffin TP, Tudhope AW, Brown BE, Chansang H, Cheeney RF (1992) Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs 11:1–11

    Article  Google Scholar 

  • Simkiss K (1964) Phosphates as crystal poisons of calcification. Biol Rev 39:487–505

    Article  Google Scholar 

  • Sparnocchia S, Schiano ME, Picco P, Bozzano R, Cappelletti A (2006) The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean). Ann Geophys 24:443–452

    Article  Google Scholar 

  • Tremblay P, Peirano A, Ferrier-Pagès C (2011) Heterotrophy in the Mediterranean symbiotic coral Cladocora caespitosa: comparison with two other scleractinian species. Mar Ecol Progr Ser 422:165–177

    Article  Google Scholar 

  • Vučetić T (1995) About oceanographical research in Veliko and Malo Jezero on the Island of Mljet. Ekol Monogr 6:401–413

    Google Scholar 

  • Yamashiro H (1995) The effects of HEPB, an inhibitor of mineral deposition, upon photosynthesis and calcification in the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 191:57–63

    Article  Google Scholar 

  • Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Helmut Zibrowius from Centre d’Océanologie de Marseille (France) and Dr. Andrea Peirano from ENEA Marine Environment Research Centre, La Spezia (Italy) for their helpful suggestions and support. Special thanks go to Dr. Kevin E. Kohler from the Oceanographic Center, Nova South-Eastern University, Dania Beach (USA) for help with Coral XDS Software. This manuscript was improved by constructive comments made by the anonymous reviewers. The author also thanks all colleagues from the Marine Biology Laboratory, Faculty of Science, Zagreb, and the Institute for Oceanography and Fisheries from Split for fieldwork and laboratory help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Kružić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kružić, P., Sršen, P. & Benković, L. The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the eastern Adriatic Sea. Facies 58, 477–491 (2012). https://doi.org/10.1007/s10347-012-0306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-012-0306-4

Keywords

Navigation