Skip to main content
Log in

Stable carbon isotope development and sea-level changes during the Late Ludlow (Silurian) of the Łysogóry region (Rzepin section, Holy Cross Mountains, Poland)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Ludlow deposits of the Winnica Formation in the Rzepin section (Holy Cross Mountains, Poland) have been studied with respect to their facies evolution and stable carbon isotope ratios from whole-rock samples. The C-isotope curve of the Rzepin section records a distinct positive excursion with maximal values of +8.9‰. A Late Ludlow positive isotope excursion is known from different paleocontinents and thus is regarded as a global isotope event. The presence of the event allows for a chemostratigraphic correlation of the Rzepin profile with the classical, biostratigraphically well-dated Gotland section. The Ludlow deposits of the Holy Cross Mountains are interpreted in terms of sea-level changes during the isotope excursion. Because the Rzepin and Gotland sections are positioned on the opposite sides of the same foreland basin, a comparison of their sequence stratigraphy allows to test the regularities of the sea-level changes on the shelf of Baltica. In the present paper, a modified view of the recently published sequence stratigraphy of the Gotland succession is presented. Our results indicate that the positive Ludlow δ13C excursion is connected with prolonged low-stand conditions with small, internal transgressive pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baarli BG, Johnson ME, Antoshkina AI (2003) Silurian stratigraphy and paleogeography of Baltica. In: Landing E, Johnson ME (eds) Silurian lands and seas, paleogeography outside of Laurentia, vol 492. New York State Museum Bulletin, New York, pp 3–34

    Google Scholar 

  • Bassett ME, Kaljo DP, Teller L (1989) The Baltic region. In: Holland CH, Bassett MG (eds) A global standard for the Silurian system, vol 9. National Museum of Wales, Geological Series, pp 158–170

  • Bickert T, Pätzold J, Samtleben C, Munnecke A (1997) Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochim Cosmochim Acta 61:2717–2730

    Article  Google Scholar 

  • Burgess PM (2001) Modelling carbonate sequence development without relative sea-level oscillations. Geology 29:1127–1130

    Article  Google Scholar 

  • Calner M, Eriksson ME (2006) Evidence for rapid environmental changes in low latitudes during the Late Silurian Lau event: the Burgen-1 drillcore, Gotland, Sweden. Geol Mag 143:15–24

    Article  Google Scholar 

  • Cherns L (1982) Palaeokarst, tidal erosion surfaces and stromatolites in the Silurian Eke Formation of Gotland, Sweden. Sedimentology 29:819–833

    Article  Google Scholar 

  • Cherns L (1983) The Hemse-Eke boundary: facies relationships in the Ludlow series of Gotland, Sweden. Sver Geol Unders C800:1–45

    Google Scholar 

  • Cramer BD, Saltzman MR (2005) Sequestration of 12C in the deep ocean during the early Wenlock (Silurian) positive carbon isotope excursion. Palaeogeogr Palaeoclimatol Palaeoecol 219:333–349

    Article  Google Scholar 

  • Cramer BD, Kleffner MA, Saltzman MR (2006) The Late Wenlock Mulde positive carbon isotope excursion in North America. GFF 128:85–90

    Article  Google Scholar 

  • Cramer BD, Kleffner MA, Brett CE, McLaughlin PI, Jeppsson L, Munnecke A, Samtleben C (2010) Paleobiogeography, high-resolution stratigraphy, and the future of Paleozoic biostratigraphy: fine-scale diachroneity of the Wenlock (Silurian) conodont Kockelella walliseri. Palaeogeogr Palaeoclimatol Palaeoecol (in press)

  • Czarnocki J (1957) Geologic map of the Holy Cross Mountains (without Quaternary deposits), 1:200000. Wydawnictwa Geologiczne, Warsaw

    Google Scholar 

  • Einasto RZ, Abushik AF, Kaljo D, Koren’ TN, Modzalevskaya TL, Nestor HZ (1986) Silurian sedimentation and the fauna of the East Baltic and Podolian marginal basins: a comparison. In: Kaljo D, Klaamann E (eds) Theory and practice of ecostratigraphy. Academy of Sciences of the Estonian SSR, Tallinn, pp 65–72

    Google Scholar 

  • Eriksson ME, Calner M (2008) A sequence stratigraphical model for the Late Ludfordian (Silurian) of Gotland, Sweden: implications for timing between changes in sea level, palaeoecology, and the global carbon cycle. Facies 54:253–276

    Article  Google Scholar 

  • Jaworowski K (1971) Sedimentary structures of the Upper Silurian siltstones in the Polish Lowland. Acta Geol Pol 21:519–571

    Google Scholar 

  • Jaworowski K (2000) Facies analysis of the Silurian shale-siltstone succession in Pomerania (northern Poland). Geol Q 44:297–315

    Google Scholar 

  • Jeppsson L (2005) Conodont-based revisions of the Late Ludfordian on Gotland, Sweden. GFF 127:273–282

    Article  Google Scholar 

  • Jeppsson L, Aldridge RJ (2000) Ludlow (Late Silurian) oceanic episodes and events. J Geol Soc Lond 157:1137–1148

    Article  Google Scholar 

  • Jeppsson L, Eriksson ME, Calner M (2006) A latest Llandovery to latest Ludlow high-resolution biostratigraphy based on the Silurian of Gotland—a summary. GFF 128:109–114

    Article  Google Scholar 

  • Jeppsson L, Talent JA, Mawson R, Simpson AJ, Andrew A, Calner M, Whitford D, Trotter JA, Sandström O, Caldon HJ (2007) High-resolution Late Silurian correlations between Gotland, Sweden, and the Broken River region, NE Australia: lithologies, conodonts and isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 245:115–137

    Article  Google Scholar 

  • Kaljo D, Martma T (2006) Application of carbon isotope stratigraphy to dating Baltic Silurian rocks. GFF 128:161–168

    Article  Google Scholar 

  • Kaljo D, Kiipli T, Martma T (1997) Carbon isotope event markers through the Wenlock to Pridoli sequence at Ohesaare (Estonia) and Priekule (Latvia). Palaeogeogr Palaeoclimatol Palaeoecol 132:211–223

    Article  Google Scholar 

  • Kaljo D, Grytsenko V, Martma T, Mõtusa M-A (2007) Three global carbon isotope shifts in the Silurian of Podolia (Ukraine): stratigraphical implications. Estonian J Earth Sci 56:205–220

    Article  Google Scholar 

  • Kowalczewski Z, Jaworowski K, Kuleta M (1998) Klonów beds (uppermost Silurian-?lowermost Devonian) and the problem of Caledonian deformations in the Holy Cross Mountains. Geol Q 42:341–378

    Google Scholar 

  • Kozłowski W (2003) Age, sedimentary environment and palaeogeographical position of the Upper Silurian oolitic beds in the Holy Cross Mountains (Central Poland). Acta Geol Pol 53:341–357

    Google Scholar 

  • Kozłowski W (2006) Sedimentary environment of the lower part of the Rzepin beds (Upper Silurian) in the Łysogóry Region of the Holy Cross Mountains. PhD dissertation, Archive of the Institute of the Geology, Warsaw University, pp 198

  • Kozłowski W (2008) Lithostratigraphy and regional significance of the Nowa Słupia Group (Upper Silurian) of the Łysogóry Region (Holy Cross Mountains, central Poland). Acta Geol Pol 58:43–74

    Google Scholar 

  • Le Hérissé A, Mullins GL, Dorning KJ, Wicander R (2009) Global patterns of organic-walled phytoplankton biodiversity during the Late Silurian to earliest Devonian. Palynology 33:25–75

    Article  Google Scholar 

  • Lehnert O, Frýda J, Buggisch W, Munnecke A, Nützel A, Křiž J, Manda S (2007) δ13C records across the Late Silurian Lau event: new data from middle palaeo-latitudes of northern peri-Gondwana (Prague Basin, Czech Republic). Palaeogeogr Palaeoclimatol Palaeoecol 245:227–244

    Article  Google Scholar 

  • Long DGF (1993) The Burgsvik Beds, an Upper Silurian storm generated sand ridge complex in southern Gotland, Sweden. GFF 115:299–309

    Article  Google Scholar 

  • Manten AA (1971) Silurian reefs of Gotland. Developments in sedimentology, vol 13. Elsevier, Amsterdam

    Google Scholar 

  • Martma T, Brazauskas A, Kaljo D, Kaminskas D, Musteikis P (2005) The Wenlock–Ludlow carbon isotope trend in the Vidukle core, Lithuania, and its relations with oceanic events. Geol Q 49:223–234

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • Melchin MJ, Holmden C (2006) Carbon isotope chemostratigraphy in Arctic Canada: sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation. Palaeogeogr Palaeoclimatol Palaeoecol 234:186–200

    Article  Google Scholar 

  • Munnecke A, Männik P (2009) New biostratigraphic and chemostratigraphic data from the Chicotte Formation (Llandovery, Anticosti Island, Laurentia) compared with the Viki core (Estonia, Baltica). Estonian J Earth Sci 58:159–169

    Article  Google Scholar 

  • Munnecke A, Samtleben C, Bickert T (2003) The Ireviken Event in the lower Silurian of Gotland, Sweden—relation to similar Palaeozoic and Proterozoic events. Palaeogeogr Palaeoclimatol Palaeoecol 195:99–124

    Article  Google Scholar 

  • Narkiewicz M (2002) Ordovician through earliest Devonian development of the Holy Cross Mts. (Poland): constraints from subsidence analysis and thermal maturity data. Geol Q 46:255–266

    Google Scholar 

  • Park SC, Han HS, Yoo DG (2003) Transgressive sand ridges on the mid-shelf of the southern sea of Korea (Korea Strait): formation and development in high-energy environments. Mar Geol 193:1–18

    Article  Google Scholar 

  • Paškevičius J (1997) The geology of the Baltic republics. Vilnius University & Geological Survey of Lithuania, Vilnius p 387

    Google Scholar 

  • Plint AG (1988) Sharp-based shoreface parasequences and offshore bars in the Cardium Formation of Alberta; their relationship to relative changes in sea-level. In: Wilgus CK, Hastings BS, Kendall CG, Posamentier HW, Ross CA, van Wagoner JC (eds) Sea-level changes—an integrated approach, vol 42. SEPM Spec Publ, pp 357–370

  • Plint AG, Nummedal D (2000) The falling stage systems tract: recognition and importance in sequence stratigraphic analysis. In: Hunt D, Gawthorpe RL (eds) Sedimentary responses to forced regressions, vol 172. Geol Soc Spec Publ, pp 1–17

  • Poprawa P, Sliaupa S, Stephenson R, Lazauskiene J (1999) Late Vendian–early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics 314:219–239

    Article  Google Scholar 

  • Porębska E (2003) Class Graptolithina. In: Malinowska L (ed) Geology of Poland 3, Atlas of the guide and characteristic fossils, part 1b/1—Devonian. Państwowy Instytut Geologiczny, Warsaw, pp 519–529

    Google Scholar 

  • Posamenthier HW (2002) Ancient shelf ridges—a potentially significant component of the transgressive systems tract: case study from offshore Northwest Java. AAPG Bull 86:75–106

    Google Scholar 

  • Saltzman MR (2001) Silurian δ13C stratigraphy: a view from North America. Geology 29:671–674

    Article  Google Scholar 

  • Samtleben C, Munnecke A, Bickert T, Pätzold J (1996) The Silurian of Gotland (Sweden): Facies interpretation based on stable isotopes in brachiopod shells. Geologische Rundschau 85:278–292

    Article  Google Scholar 

  • Samtleben C, Munnecke A, Bickert T (2000) Development of facies and C/O-isotopes in transects through the Ludlow of Gotland: evidence for global and local influences on a shallow-marine environment. Facies 43:1–38

    Article  Google Scholar 

  • Schlager W (1993) Accommodation and supply—a dual control on stratigraphic sequences. Sed Geol 86:111–136

    Article  Google Scholar 

  • Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM concepts in sedimentology and paleontology series no 8, 200 pp

  • Stel JH, de Coo JCM (1977) The Silurian Upper Burgsvik and Lower Hamra-Sundre Beds, Gotland. Scripta Geol 44:1–43

    Google Scholar 

  • Stricanne L, Munnecke A, Pross J (2006) Assessing mechanisms of environmental change: palynological signals across the Late Ludlow (Silurian) positive isotope excursion (δ13C, δ18O) on Gotland, Sweden. Palaeogeogr Palaeoclimatol Palaeoecol 230:1–31

    Article  Google Scholar 

  • Szymański B, Modliński Z (2003) Revision of the Silurian stratigraphy in selected boreholes from the Polish sector of the Baltic Depression (northern Poland). Biuletyn Państwowego Instytutu Geologicznego 405:109–138

    Google Scholar 

  • Teller L (1997) Revision of certain Pridoli monograptids from the Chełm key section (EEP). Palaeontologia Polonica 56:71–85

    Google Scholar 

  • Tomczykowa E (1988) Silurian and lower Dewonian biostratigraphy and palaeoecology in Poland. Biuletyn Instytutu Geologicznego 359:21–41

    Google Scholar 

  • Wigforss-Lange J (1999) Carbon isotope 13C enrichment in Upper Silurian (Whitcliffian) marine calcareous rocks in Scania, Sweden. GFF 121:273–279

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Mikael Calner (Lund, Sweden) and Dimitri Kaljo (Tallinn, Estonia) for their constructive reviews and to André Freiwald for the editorial handling. This study was supported by the IGP-BST/2008 fund to W. K. as well as by the Deutsche Forschungsgemeinschaft (DFG Mu 2352/1) to A. M. The microscopic photographs were taken in the Microanalysis Laboratory of the Faculty of Geology, Warsaw University. This paper is a contribution to the IGCP 503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Kozłowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozłowski, W., Munnecke, A. Stable carbon isotope development and sea-level changes during the Late Ludlow (Silurian) of the Łysogóry region (Rzepin section, Holy Cross Mountains, Poland). Facies 56, 615–633 (2010). https://doi.org/10.1007/s10347-010-0220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-010-0220-6

Keywords

Navigation