Advertisement

Facies

, Volume 56, Issue 4, pp 615–633 | Cite as

Stable carbon isotope development and sea-level changes during the Late Ludlow (Silurian) of the Łysogóry region (Rzepin section, Holy Cross Mountains, Poland)

  • Wojciech KozłowskiEmail author
  • Axel Munnecke
Original Article

Abstract

The Ludlow deposits of the Winnica Formation in the Rzepin section (Holy Cross Mountains, Poland) have been studied with respect to their facies evolution and stable carbon isotope ratios from whole-rock samples. The C-isotope curve of the Rzepin section records a distinct positive excursion with maximal values of +8.9‰. A Late Ludlow positive isotope excursion is known from different paleocontinents and thus is regarded as a global isotope event. The presence of the event allows for a chemostratigraphic correlation of the Rzepin profile with the classical, biostratigraphically well-dated Gotland section. The Ludlow deposits of the Holy Cross Mountains are interpreted in terms of sea-level changes during the isotope excursion. Because the Rzepin and Gotland sections are positioned on the opposite sides of the same foreland basin, a comparison of their sequence stratigraphy allows to test the regularities of the sea-level changes on the shelf of Baltica. In the present paper, a modified view of the recently published sequence stratigraphy of the Gotland succession is presented. Our results indicate that the positive Ludlow δ13C excursion is connected with prolonged low-stand conditions with small, internal transgressive pulses.

Keywords

Sea-level changes C-isotope excursion Ludlow Upper Silurian Holy Cross Mountains Gotland Poland 

Notes

Acknowledgments

The authors are very grateful to Mikael Calner (Lund, Sweden) and Dimitri Kaljo (Tallinn, Estonia) for their constructive reviews and to André Freiwald for the editorial handling. This study was supported by the IGP-BST/2008 fund to W. K. as well as by the Deutsche Forschungsgemeinschaft (DFG Mu 2352/1) to A. M. The microscopic photographs were taken in the Microanalysis Laboratory of the Faculty of Geology, Warsaw University. This paper is a contribution to the IGCP 503.

References

  1. Baarli BG, Johnson ME, Antoshkina AI (2003) Silurian stratigraphy and paleogeography of Baltica. In: Landing E, Johnson ME (eds) Silurian lands and seas, paleogeography outside of Laurentia, vol 492. New York State Museum Bulletin, New York, pp 3–34Google Scholar
  2. Bassett ME, Kaljo DP, Teller L (1989) The Baltic region. In: Holland CH, Bassett MG (eds) A global standard for the Silurian system, vol 9. National Museum of Wales, Geological Series, pp 158–170Google Scholar
  3. Bickert T, Pätzold J, Samtleben C, Munnecke A (1997) Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochim Cosmochim Acta 61:2717–2730CrossRefGoogle Scholar
  4. Burgess PM (2001) Modelling carbonate sequence development without relative sea-level oscillations. Geology 29:1127–1130CrossRefGoogle Scholar
  5. Calner M, Eriksson ME (2006) Evidence for rapid environmental changes in low latitudes during the Late Silurian Lau event: the Burgen-1 drillcore, Gotland, Sweden. Geol Mag 143:15–24CrossRefGoogle Scholar
  6. Cherns L (1982) Palaeokarst, tidal erosion surfaces and stromatolites in the Silurian Eke Formation of Gotland, Sweden. Sedimentology 29:819–833CrossRefGoogle Scholar
  7. Cherns L (1983) The Hemse-Eke boundary: facies relationships in the Ludlow series of Gotland, Sweden. Sver Geol Unders C800:1–45Google Scholar
  8. Cramer BD, Saltzman MR (2005) Sequestration of 12C in the deep ocean during the early Wenlock (Silurian) positive carbon isotope excursion. Palaeogeogr Palaeoclimatol Palaeoecol 219:333–349CrossRefGoogle Scholar
  9. Cramer BD, Kleffner MA, Saltzman MR (2006) The Late Wenlock Mulde positive carbon isotope excursion in North America. GFF 128:85–90CrossRefGoogle Scholar
  10. Cramer BD, Kleffner MA, Brett CE, McLaughlin PI, Jeppsson L, Munnecke A, Samtleben C (2010) Paleobiogeography, high-resolution stratigraphy, and the future of Paleozoic biostratigraphy: fine-scale diachroneity of the Wenlock (Silurian) conodont Kockelella walliseri. Palaeogeogr Palaeoclimatol Palaeoecol (in press)Google Scholar
  11. Czarnocki J (1957) Geologic map of the Holy Cross Mountains (without Quaternary deposits), 1:200000. Wydawnictwa Geologiczne, WarsawGoogle Scholar
  12. Einasto RZ, Abushik AF, Kaljo D, Koren’ TN, Modzalevskaya TL, Nestor HZ (1986) Silurian sedimentation and the fauna of the East Baltic and Podolian marginal basins: a comparison. In: Kaljo D, Klaamann E (eds) Theory and practice of ecostratigraphy. Academy of Sciences of the Estonian SSR, Tallinn, pp 65–72Google Scholar
  13. Eriksson ME, Calner M (2008) A sequence stratigraphical model for the Late Ludfordian (Silurian) of Gotland, Sweden: implications for timing between changes in sea level, palaeoecology, and the global carbon cycle. Facies 54:253–276CrossRefGoogle Scholar
  14. Jaworowski K (1971) Sedimentary structures of the Upper Silurian siltstones in the Polish Lowland. Acta Geol Pol 21:519–571Google Scholar
  15. Jaworowski K (2000) Facies analysis of the Silurian shale-siltstone succession in Pomerania (northern Poland). Geol Q 44:297–315Google Scholar
  16. Jeppsson L (2005) Conodont-based revisions of the Late Ludfordian on Gotland, Sweden. GFF 127:273–282CrossRefGoogle Scholar
  17. Jeppsson L, Aldridge RJ (2000) Ludlow (Late Silurian) oceanic episodes and events. J Geol Soc Lond 157:1137–1148CrossRefGoogle Scholar
  18. Jeppsson L, Eriksson ME, Calner M (2006) A latest Llandovery to latest Ludlow high-resolution biostratigraphy based on the Silurian of Gotland—a summary. GFF 128:109–114CrossRefGoogle Scholar
  19. Jeppsson L, Talent JA, Mawson R, Simpson AJ, Andrew A, Calner M, Whitford D, Trotter JA, Sandström O, Caldon HJ (2007) High-resolution Late Silurian correlations between Gotland, Sweden, and the Broken River region, NE Australia: lithologies, conodonts and isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 245:115–137CrossRefGoogle Scholar
  20. Kaljo D, Martma T (2006) Application of carbon isotope stratigraphy to dating Baltic Silurian rocks. GFF 128:161–168CrossRefGoogle Scholar
  21. Kaljo D, Kiipli T, Martma T (1997) Carbon isotope event markers through the Wenlock to Pridoli sequence at Ohesaare (Estonia) and Priekule (Latvia). Palaeogeogr Palaeoclimatol Palaeoecol 132:211–223CrossRefGoogle Scholar
  22. Kaljo D, Grytsenko V, Martma T, Mõtusa M-A (2007) Three global carbon isotope shifts in the Silurian of Podolia (Ukraine): stratigraphical implications. Estonian J Earth Sci 56:205–220CrossRefGoogle Scholar
  23. Kowalczewski Z, Jaworowski K, Kuleta M (1998) Klonów beds (uppermost Silurian-?lowermost Devonian) and the problem of Caledonian deformations in the Holy Cross Mountains. Geol Q 42:341–378Google Scholar
  24. Kozłowski W (2003) Age, sedimentary environment and palaeogeographical position of the Upper Silurian oolitic beds in the Holy Cross Mountains (Central Poland). Acta Geol Pol 53:341–357Google Scholar
  25. Kozłowski W (2006) Sedimentary environment of the lower part of the Rzepin beds (Upper Silurian) in the Łysogóry Region of the Holy Cross Mountains. PhD dissertation, Archive of the Institute of the Geology, Warsaw University, pp 198Google Scholar
  26. Kozłowski W (2008) Lithostratigraphy and regional significance of the Nowa Słupia Group (Upper Silurian) of the Łysogóry Region (Holy Cross Mountains, central Poland). Acta Geol Pol 58:43–74Google Scholar
  27. Le Hérissé A, Mullins GL, Dorning KJ, Wicander R (2009) Global patterns of organic-walled phytoplankton biodiversity during the Late Silurian to earliest Devonian. Palynology 33:25–75CrossRefGoogle Scholar
  28. Lehnert O, Frýda J, Buggisch W, Munnecke A, Nützel A, Křiž J, Manda S (2007) δ13C records across the Late Silurian Lau event: new data from middle palaeo-latitudes of northern peri-Gondwana (Prague Basin, Czech Republic). Palaeogeogr Palaeoclimatol Palaeoecol 245:227–244CrossRefGoogle Scholar
  29. Long DGF (1993) The Burgsvik Beds, an Upper Silurian storm generated sand ridge complex in southern Gotland, Sweden. GFF 115:299–309CrossRefGoogle Scholar
  30. Manten AA (1971) Silurian reefs of Gotland. Developments in sedimentology, vol 13. Elsevier, AmsterdamGoogle Scholar
  31. Martma T, Brazauskas A, Kaljo D, Kaminskas D, Musteikis P (2005) The Wenlock–Ludlow carbon isotope trend in the Vidukle core, Lithuania, and its relations with oceanic events. Geol Q 49:223–234Google Scholar
  32. McCrea JM (1950) On the isotopic chemistry of carbonates and paleotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  33. Melchin MJ, Holmden C (2006) Carbon isotope chemostratigraphy in Arctic Canada: sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation. Palaeogeogr Palaeoclimatol Palaeoecol 234:186–200CrossRefGoogle Scholar
  34. Munnecke A, Männik P (2009) New biostratigraphic and chemostratigraphic data from the Chicotte Formation (Llandovery, Anticosti Island, Laurentia) compared with the Viki core (Estonia, Baltica). Estonian J Earth Sci 58:159–169CrossRefGoogle Scholar
  35. Munnecke A, Samtleben C, Bickert T (2003) The Ireviken Event in the lower Silurian of Gotland, Sweden—relation to similar Palaeozoic and Proterozoic events. Palaeogeogr Palaeoclimatol Palaeoecol 195:99–124CrossRefGoogle Scholar
  36. Narkiewicz M (2002) Ordovician through earliest Devonian development of the Holy Cross Mts. (Poland): constraints from subsidence analysis and thermal maturity data. Geol Q 46:255–266Google Scholar
  37. Park SC, Han HS, Yoo DG (2003) Transgressive sand ridges on the mid-shelf of the southern sea of Korea (Korea Strait): formation and development in high-energy environments. Mar Geol 193:1–18CrossRefGoogle Scholar
  38. Paškevičius J (1997) The geology of the Baltic republics. Vilnius University & Geological Survey of Lithuania, Vilnius p 387Google Scholar
  39. Plint AG (1988) Sharp-based shoreface parasequences and offshore bars in the Cardium Formation of Alberta; their relationship to relative changes in sea-level. In: Wilgus CK, Hastings BS, Kendall CG, Posamentier HW, Ross CA, van Wagoner JC (eds) Sea-level changes—an integrated approach, vol 42. SEPM Spec Publ, pp 357–370Google Scholar
  40. Plint AG, Nummedal D (2000) The falling stage systems tract: recognition and importance in sequence stratigraphic analysis. In: Hunt D, Gawthorpe RL (eds) Sedimentary responses to forced regressions, vol 172. Geol Soc Spec Publ, pp 1–17Google Scholar
  41. Poprawa P, Sliaupa S, Stephenson R, Lazauskiene J (1999) Late Vendian–early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics 314:219–239CrossRefGoogle Scholar
  42. Porębska E (2003) Class Graptolithina. In: Malinowska L (ed) Geology of Poland 3, Atlas of the guide and characteristic fossils, part 1b/1—Devonian. Państwowy Instytut Geologiczny, Warsaw, pp 519–529Google Scholar
  43. Posamenthier HW (2002) Ancient shelf ridges—a potentially significant component of the transgressive systems tract: case study from offshore Northwest Java. AAPG Bull 86:75–106Google Scholar
  44. Saltzman MR (2001) Silurian δ13C stratigraphy: a view from North America. Geology 29:671–674CrossRefGoogle Scholar
  45. Samtleben C, Munnecke A, Bickert T, Pätzold J (1996) The Silurian of Gotland (Sweden): Facies interpretation based on stable isotopes in brachiopod shells. Geologische Rundschau 85:278–292CrossRefGoogle Scholar
  46. Samtleben C, Munnecke A, Bickert T (2000) Development of facies and C/O-isotopes in transects through the Ludlow of Gotland: evidence for global and local influences on a shallow-marine environment. Facies 43:1–38CrossRefGoogle Scholar
  47. Schlager W (1993) Accommodation and supply—a dual control on stratigraphic sequences. Sed Geol 86:111–136CrossRefGoogle Scholar
  48. Schlager W (2005) Carbonate sedimentology and sequence stratigraphy. SEPM concepts in sedimentology and paleontology series no 8, 200 ppGoogle Scholar
  49. Stel JH, de Coo JCM (1977) The Silurian Upper Burgsvik and Lower Hamra-Sundre Beds, Gotland. Scripta Geol 44:1–43Google Scholar
  50. Stricanne L, Munnecke A, Pross J (2006) Assessing mechanisms of environmental change: palynological signals across the Late Ludlow (Silurian) positive isotope excursion (δ13C, δ18O) on Gotland, Sweden. Palaeogeogr Palaeoclimatol Palaeoecol 230:1–31CrossRefGoogle Scholar
  51. Szymański B, Modliński Z (2003) Revision of the Silurian stratigraphy in selected boreholes from the Polish sector of the Baltic Depression (northern Poland). Biuletyn Państwowego Instytutu Geologicznego 405:109–138Google Scholar
  52. Teller L (1997) Revision of certain Pridoli monograptids from the Chełm key section (EEP). Palaeontologia Polonica 56:71–85Google Scholar
  53. Tomczykowa E (1988) Silurian and lower Dewonian biostratigraphy and palaeoecology in Poland. Biuletyn Instytutu Geologicznego 359:21–41Google Scholar
  54. Wigforss-Lange J (1999) Carbon isotope 13C enrichment in Upper Silurian (Whitcliffian) marine calcareous rocks in Scania, Sweden. GFF 121:273–279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of GeologyUniversity of WarsawWarsawPoland
  2. 2.GeoZentrum Nordbayern, Fachgruppe PaläoumweltUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations