Skip to main content

Advertisement

Log in

Meiofauna, trace metals, TOC, sedimentology, and oxygen availability in the Late Miocene sublittoral deposits of Lake Pannon

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Late Miocene fine-grained deposits have been investigated in the Vienna Basin to attest oxygen availability for infauna and epifauna in the sublittoral of the long-lived Lake Pannon. A clay and fine silt of the deeper lacustrine facies of a bay passed vertically into a silty clay, silt, and fine sand rhythmic deposition reflecting successive progradation of brackish prodelta to distal delta front colonized by a dense benthic population. A fully oxygenated environment is supposed in the Congeria subglobosa Beds and prodelta accentuated by ichnofauna, ostracods, and abundant in taxa and specimens, low total organic content, and trace elements concentration. A limited anoxic event caused by temporarily worsened circulation has been detected in non-calcareous greyish-blue homogenous clay with a noticeable high concentration of Ni, Co, and Pb coupled with absence of fossils, bioturbation, and low total organic carbon content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Babinszki E, Sztanó O, Magyari Á (2003) Episodic deposition in the Kálla bay of Lake Pannon: sedimentology and trace fossils of Kálla Sand. Földtani Közlöny 133:363–382

    Google Scholar 

  • Bird FL, Boon PI, Nichols PD (2000) Physicochemical and microbial properties of burrows of the deposit-feeding thalassinidean ghost shrimp Biffarius arenosus (Decapoda: Callianassidae). Estuar Coast Shelf Sci 51:279–291

    Article  Google Scholar 

  • Bishop GA, Williams AB (2005) Taphonomy and preservation of burrowing thalassinidean shrimps. Proc Biol Soc Wash 118:218–236

    Article  Google Scholar 

  • Bodergat A, Ishizaki K, Oki K, Rio M (2002) Currents, civilization, or volcanism? Ostracodes as sentinels in a patchy environment: Kagashima Bay, Japan. Micropaleontology 48:285–299

    Google Scholar 

  • Brenchley PJ (1985) Storm influenced sandstone beds. Modern Geol 9:369–396

    Google Scholar 

  • Bromley RG (1996) Trace fossils: biology, taphonomy and applications, 2nd edn. Chapman & Hall, London, p 361

    Google Scholar 

  • Bromley RG, Ekdale AA (1984) Chondrites: a trace fossil indicator of anoxia in sediments. Science 224:173–174

    Article  Google Scholar 

  • Buck SG, Goldring R (2003) Conical sedimentary structures, trace fossils or not? Observations, experiments, and review. J Sediment Res 73:338–353

    Article  Google Scholar 

  • Cohen AS (2003) Paleolimnology. The history and evolution of lake systems. Oxford University Press, Oxford, p 500

    Google Scholar 

  • Cziczer I, Magyar I, Pipík R, Böhme M, Ćorić S, Bakrač K, Sütő-Szentai M, Lantos M, Babinszki E, Müller P (2009) Life in the sublittoral zone of Lake Pannon: paleontological analysis of the Upper Miocene Szák Formation. Int J Earth Sci 98:1741–1766

    Article  Google Scholar 

  • Danielopol DL, Geiger W, Tölderer-Farmer M, Orellana CP, Terrat MN (1988) In search of Cypris and Cythere—a report of the evolutionary ecological project on limnic Ostracoda from the Mondsee (Austria). In: Hanai T, Ikeya N, Ishizaki K (eds) Evolutionary biology of ostracoda, its fundamentals and applications. Elsevier, Kodansha, pp 485–500

    Chapter  Google Scholar 

  • Danielopol DL, Casale L, Rogulj B, Strobl J, Maier K (1990) Spatial distribution of Cytherissa lacustris living in Mondsee. Bull Inst Géol Bassin d’Aquitaine 47:139–165

    Google Scholar 

  • Einsele G, Seilacher A (1982) Paleogeographic significance of tempestites and periodites. In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer, Berlin Heidelberg New York, pp 531–536

    Google Scholar 

  • Frey RW, Curran AH, Pemberton GS (1984) Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. J Paleontol 58:511–528

    Google Scholar 

  • Gamenick I, Jahn A, Vopel K, Giere O (1996) Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Sea shore: colonisation studies and tolerance experiments. Mar Ecol Progr Ser 144:73–85

    Article  Google Scholar 

  • Harzhauser M, Mandic O (2004) The muddy bottom of Lake Pannon–a challenge for dreissenid (Late Miocene; Bivalvia). Palaeogeogr Palaeoclimatol Palaeoecol 204:331–352

    Article  Google Scholar 

  • Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—Palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31

    Article  Google Scholar 

  • Harzhauser M, Tempfer PM (2004) Late Pannonian wetland ecology of the Vienna Basin based on molluscs and lower vertebrate assemblages (Late Miocene, MN 9, Austria). Courier Forschungsinstitut Senckenberg 246:55–68

    Google Scholar 

  • Harzhauser M, Ch Latal, Piller WE (2007) The stable isotope archive of Lake Pannon as a mirror of Late Miocene climate change. Palaeogeogr Palaeoclimatol Palaeoecol 249:335–350

    Article  Google Scholar 

  • Harzhauser M, Kern A, Soliman A, Minati K, Piller WE, Danielopol DL, Zuschin M (2008) Centennial- to decadal scale environmental shifts in and around Lake Pannon (Vienna Basin) related to a major Late Miocene lake level rise. Palaeogeogr Palaeoclimatol Palaeoecol 270:102–115

    Article  Google Scholar 

  • Jiříček R (1985) Die Ostracoden des Pannonien. In: Papp A (ed) Chronostratigraphie und Neostratotypen, Miozän der Zentral Paratethys, Bd. VII, M6 Pannonien (Slavonien und Serbien). Akadémiai Kiado, Budapest, pp 378–408

    Google Scholar 

  • Jiříček R (1990) Fluvial and deltaic systems of Neogene Paratethys. Konferencie, Sympózia, Semináre, 50 rokov výuky geológie a paleontológie na Slovensku. Geologický ústav Dionýza Štúra, Bratislava, pp 79–88 [in Czech with English Abstract]

  • Jiříček R (2002) The evolution of the molasse in the Alpino-Carpathian Foredeep and the Vienna Basin. Exploration geophysics, remote sensing and environment IX: 1–2, CAAG—Praha, pp 178 [in Slovak with abstract in English]

  • Juhász G, Magyar I (1992) Review and correlation of the Late Neogene (Pannonian s.l.) lithofacies and mollusc biofacies in the Great Plain, eastern Hungary. Földtani Közlöny 122:167–194

    Google Scholar 

  • Kaesler RL, Kontrovitz M, Taunton S (1993) Crushing strength of Puriana pacifica (Ostracoda), an experimental approach to taphonomy. J Paleontol 67:1005–1010

    Google Scholar 

  • Kontrovitz M (1967) An investigation of ostracode preservation. Quart J Florida Acad Sci 29:171–177

    Google Scholar 

  • Kováč M, Baráth I (1995) Tectono-sedimentary development of the Alpine-Carpathian-Pannonian junction zone during the Miocene (in Slovak with abstract in English). Mineralia Slovaca 28:1–13

    Google Scholar 

  • Kováč M, Baráth I, Kováčová-Slamková M, Pipík R, Hlavatý I, Hudáčková N (1998) Late Miocene paleoenvironments and sequence stratigraphy: northern Vienna Basin. Geologica Carpathica 49:445–458

    Google Scholar 

  • Kováč M, Fordinál K, Halásová E, Hudáčková N, Joniak P, Pipík R, Sabol M, Kováčová-Slamková M, Sliva Ľ (2005) Western Carpathian fossil ecosystems and their relation to Neogene evolution of Euro-Asian continent (in Slovak). Geologické práce, Správy 111:61–121

    Google Scholar 

  • Krstić N (1971) Ostracodes biofacies in the Pannone. In: Oertli HJ (ed) Paléoécologie des Ostracodes, vol 5. Bull Centre Rech, pp 391–397

  • Lellák J, Kubíček F (1991) Hydrobiologie (in Czech). Univerzita Karlova—Karolinum, Praha, p 260

    Google Scholar 

  • Maddocks RF (1988) One hundred million years of predation on ostracods: the fossil record in Texas. In: Hanai T, Ikeya N, Ishizaki K (eds) Evolutionary biology of ostracoda, its fundamentals and applications. Elsevier, Kodansha, pp 637–657

    Chapter  Google Scholar 

  • Magyar I, Geary DH, Müller P (1999) Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Paleogeogr Paleoclimatol Paleoecol 147:151–167

    Article  Google Scholar 

  • Magyar I, Müller PM, Sztanó O, Babinszki E, Lantos M (2006) Oxygen-related facies in Lake Pannon deposits (Upper Miocene) at Budapest-Köbánya. Facies 52:209–220

    Article  Google Scholar 

  • Magyar I, Lantos M, Ujszaszi K, Kordos L (2007) Magnetostratigraphic, seismic and biostratigraphic correlations of the Upper Miocene sediments in the northwestern Pannonian basin system. Geol Carpath 58:277–290

    Google Scholar 

  • Martens K (1994) Ostracod speciation in ancient lakes: a review. In: Martens K, Goddeeris B, Coulter G (eds) Speciation in ancient lakes, vol. 44. Arch Hydrobiol, Beih Ergebn Limnol, pp 203–222

  • Meisch C (2000) Freshwater Ostracoda of Western and Central Europe. Spektrum Akademischer Verlag, Heidelberg, p 522

    Google Scholar 

  • Moretti M, Sabato L (2007) Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant′Arcangelo Basin (southern Italy): seismic shock vs. overloading. Sediment Geol 196:31–45

    Article  Google Scholar 

  • Myrow PM, Southard JB (1996) Tempestite deposition. J Sed Res 66:875–887

    Google Scholar 

  • Oertli HJ (1971) The aspect of ostracode faunas—a possible new tool in petroleum sedimentology. In: Oertli HJ (ed) Paléoécologie des Ostracodes, vol 5. Bull Centre Rech, Pau—SNPA, pp 137–151

  • Owen G (1987) Deformation processes in unconsolidated sands. In: Jones ME, Preston RMF (eds) Deformation of sediments and sedimentary rocks, vol 29. Geol Soc Spec Publ Lond, pp 11–24

    Google Scholar 

  • Papp A (1951) Das Pannon des Wiener Beckens. Mitt Geol Gesell in Wien 1946: 39–41 and 1948: 99–193

  • Pipík R (1998) Salinity changes recorded by Ostracoda assemblages found in Pannonian sediments in the western margin of the Danube Basin. Bull Centres Rech Explor-Prod Elf-Aquitaine 20:167–177

    Google Scholar 

  • Pipík R (2007) Phylogeny, palaeoecology, and invasion of non-marine waters by the Late Miocene hemicytherid ostracod Tyrrhenocythere from Lake Pannon. Acta Palaeont Pol 52:351–368

    Google Scholar 

  • Pipík R, Fordinál K, Slamková M, Starek D, Chalupová B (2004) Annotated checklist of the Pannonian microflora, evertebrate and vertebrate community from Studienka, Vienna Basin. Scripta Fac Sci Nat Univ Masaryk Brunensis. Geology 31–32(2001–2002):47–54

    Google Scholar 

  • Pokorný V (1952) The ostracods of the so-called basal-horizon of the Subglobosa Beds at Hodonín (Pliocene, Inner Alpine Basin, Czechoslovakia) (in Czech with Russian and English abstracts). Sborník Ústředního ústavu geologického 19:229–396

    Google Scholar 

  • Reineck HE, Singh IB (1980) Depositional sedimentary environments, 2nd edn. Springer, Berlin Heidelberg New York, p 551

    Google Scholar 

  • Ruiz F, Abad M, Bodergat AM, Carbonel P, Rodríguez-Lázaro J, Yasuhara M (2005) Marine and brackish-water ostracods as sentinels of anthropogenic impacts. Earth-Sci Rev 72:89–111

    Article  Google Scholar 

  • Ruiz F, Abad M, Olías M, Galán E, González I, Aguilá E, Hamoumi N, Pulido I, Cantano M (2006) The present environmental scenario of the Nador Lagoon (Morocco). Environ Res 102:215–229

    Article  Google Scholar 

  • Savrda ChE, Bottjer DJ (1986) Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology 14:3–6

    Article  Google Scholar 

  • Schaller T, HCh Moor, Wehrli B (1997) Sedimentary profiles of Fe, Mn, V, Cr, As and Mo as indicators of benthic redox conditios in Baldeggersee. Aquat Sci 59:345–361

    Article  Google Scholar 

  • Sims JD (1973) Earthquake-induced structures in sediments of Van Norman Lake, San Fernando, California. Science 182:161–163

    Article  Google Scholar 

  • Skei JM, Loring DH, Rantala RTT (1996) Trace metals in suspended particulate matter and in sediment trap material from a permanently anoxic fjord–Framvaren, South Norway. Aquat Geochem 2:131–147

    Article  Google Scholar 

  • Vakarcs G, Vail PR, Tari G, Pogácsás Gy, Mattick RE, Szabó A (1994) Third-order Middle Miocene-Early Pliocene depositional sequences in the prograding delta complex of the Pannonian Basin. Tectonophysics 240:81–106

    Article  Google Scholar 

  • Van Straaten LMJU (1959) Littoral and submarine morphology of the Rhone Delta. In: Russell RJ (ed) 2nd coastal geographic conference, Baton Rouge, Proceedings; National Academy of Science, National Research Council, pp 233–264

  • Vass D (2002) Litostratigrafia Západných Karpát: neogén a budínsky paleogén. Štátny geologický ústav Dionýza Štúra, Bratislava, p 202

    Google Scholar 

  • Waeles M, Riso RD, Le Corre P (2005) Seasonal variations of cadmium speciation in the Penzé estuary, NW France. Estuar Coast Shelf Sci 65:143–152

    Article  Google Scholar 

  • Wesselingh FP, Kaandorp RJG, Vonhof HB, Räsänen ME, Renema W, Gingras M (2006) The nature of aquatic landscapes in the Miocene of western Amazonia: an integrated palaeontological and geochemical approach. Scripta Geol 133:363–393

    Google Scholar 

  • Wetzel RG (2001) Limnology, lake and river ecosystems, 3rd edn. Academic Press, San Diego, p 1006

    Google Scholar 

  • Yin Y, Geiger W (1995) Spatial distribution of ostracods related to abiotic factors in Mooswinkl Bay, Mondsee, Austria. In: Říha J (ed) Ostracoda and biostratigraphy. AA Balkema, Rotterdam, pp 381–387

    Google Scholar 

Download references

Acknowledgments

This work was supported by the APVV agency (project APVT-51-045202 and APVV-0109-07). We are grateful to Prof. Kováč and Dr. Sliva from Comenius University for their palaeogeographical comments, Dr. Šimo from Slovak Academy of Sciences for his comments to chapter Ichnofossils and Alžbeta Svitáčová from Slovak Academy of Sciences for technical help. Thanks are also extended to two anonymous reviewers for their constructive comments, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Starek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starek, D., Pipík, R. & Hagarová, I. Meiofauna, trace metals, TOC, sedimentology, and oxygen availability in the Late Miocene sublittoral deposits of Lake Pannon. Facies 56, 369–384 (2010). https://doi.org/10.1007/s10347-009-0208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-009-0208-2

Keywords

Navigation