Facies

, Volume 54, Issue 1, pp 107–120

Iron bacteria in Devonian carbonates (Tafilalt, Anti-Atlas, Morocco)

Original Article

Abstract

A condensed Mid-Upper Devonian succession of the Tafilalt (Anti-Atlas) contains numerous red carbonate intervals. Bioclastic tempestites form a transition between an outer shelf and a hemipelagic setting. The red pigmentation is not related to the abundance of detrital iron oxides, but to the presence of iron bacteria and fungi. They form bioconstructions remarkably similar to those previously described in the Jurassic Ammonitico Rosso from Italy and Spain. Thus, dysaerobic microenvironments are proposed and not oxic conditions for these Fe-poor sediments.

Keywords

Devonian Red pigmentation Iron bacteria Morroco 

References

  1. Alberti GK (1981) Daten zur stratigraphischen Verbreitung der Nowakiidae (Dacryonarida) im Devon von NW-Afrika (Marokko, Algerien). Senck leth 62:205–216Google Scholar
  2. Becker RT (1993) Stratigraphische Gliederung und Ammonoideen-Faunen im Nehdenium (Oberdevon II) von Europa und Nord-Afrika. Cour Forsch-Inst Senckenberg 155:1–405Google Scholar
  3. Becker RT, House MR (1994) International Devonian goniatite zonation, Emsian to Givetian, with new records from Morocco. Cour Forsch-Inst Senckenberg 169:73–135 Google Scholar
  4. Becker RT, House MR (2000a) Emsian and Eifelian ammonoid succession at Bou Tchrafine (Tafilalt platform, Anti-Atlas, Morocco). Notes Mém Serv Géol Maroc 399:21–26Google Scholar
  5. Becker RT, House MR (2000b) Late Givetian and Frasnian ammonoid succession at Bou Tchrafine (Anti-Atlas, southern Morocco). Notes Mém Serv Géol Maroc 399:27–36Google Scholar
  6. Becker RT, House MR (2000c) The Fammenian ammonoid succession at Bou Tchrafine (Anti-Atlas, Southern Morocco). Notes Mém Serv Géol Maroc 399:37–42Google Scholar
  7. Boulvain F, De Ridder Ch, Gillan D, Mamet B, Préat A (2001) Iron microbial communities in Belgian Frasnian carbonate mounds. Facies 44:47–60CrossRefGoogle Scholar
  8. Brierley CL (1990) Metal immobilization using bacteria. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw Hill, New York, pp 303–324Google Scholar
  9. Bultynck P (1987) Pelagic and neritic conodont successions from the Givetian of pre-Sahara Morocco and the Ardennes. Bull Inst Roy Sci nat Belg 57:147–181Google Scholar
  10. Bultynck P, Dejonghe L (eds) (2001) Lithostratigraphic scale of Belgium. Geol Belgica 4:1–168Google Scholar
  11. Bultynck P, Hollard H (1980) Distribution comparée de conodontes et goniatites dévoniennes des plaines du Dra, du Maider et du Tafilalt (Maroc). Aardkund Meded 1:8–73Google Scholar
  12. Bultynck P, Jacobs L (1981) Conodontes et sédimentologie des couches de passage du Givetien au Frasnien dans le nord du Tafilalt et dans le Maïder (Maroc Présaharien). Bull Inst Roy Sci nat Belg 53(2):1–24Google Scholar
  13. Bultynck P, Walliser OH (1991) Section Bou Tchrafine (Mapsheet Erfoud NH-30-xx-2). In: Walliser OH (ed) Morocco, Field Meet SDS Guidebook, ICS-IUGS, Ottawa, pp 49–57Google Scholar
  14. Chauve P (1975) Jura: guides géologiques régionaux. Masson, Issy les Moulineaux, France , 216 ppGoogle Scholar
  15. Clariond L (1934) Sur le Dévonien du Tafilalt et du Maroc. CR Soc Géol Fr 1934:223–224Google Scholar
  16. Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, and uses. Wiley, Weinheim, 664 ppGoogle Scholar
  17. Cowen JP (1992) Morphological study of marine bacterial capsules: implications for marine aggregates. Mar Biol 114:85–95Google Scholar
  18. Della Porta G, Mamet A, Préat A (2006) Bacterial mediation in the formation of red limestones, Upper Carboniferous, Cantabrian Mountains, Spain. In: Wong ThE (ed) Proceedings of the 15th International Congress on Carboniferous and Permian Stratigraphy. Utrecht, Royal Dutch Academy of Arts and Sciences, Amsterdam, pp 243–250Google Scholar
  19. Fenchel T, Finlay J (1995) Ecology and evolution in anoxic worlds. Oxford Series in Ecology and Evolution, Oxford University Press, New York, 276 ppGoogle Scholar
  20. Ghiorse WC (1984) Biology of iron and manganese-depositing bacteria. Ann Rev Microbiol 38:515–550Google Scholar
  21. Gradstein F, Ogg J, Smith A (2004) A geological time scale. Cambridge University Press, London, 589 ppGoogle Scholar
  22. Hollard H (1963) Présence d’Anetoceras advolvens Erben (Ammonoidée primitive) dans le Dévonien inférieur du Maroc Présaharien. Notes Mém Serv Géol Maroc 23:131–139Google Scholar
  23. Hu X, Jansa L, Wand C, Sarti M, Bak K, Wagreich M, Michalik J, Sotak J (2005) Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretac Res 26:3–20CrossRefGoogle Scholar
  24. Lottmann J (1990) Die pumilio-Events (Mittel-Devon). Gött Arb Geol Paläont 44:1–98Google Scholar
  25. McLean RJC, Fortin D, Brown DA (1996) Microbial metal-binding mechanisms and their relations to nuclear waste disposal. Can J Microbiol 42:392–400CrossRefGoogle Scholar
  26. Mamet B, Boulvain F (1991) Constructions hématitiques des griottes carbonifères (Asturies, Espagne). Bull Soc Belge Géol 99:229–239Google Scholar
  27. Mamet B, Préat A (2003) Sur l’origine bactérienne et fongique de la pigmentation de l’Ammonitico Rosso (Jurassique, région de Vérone, Italie du nord). Rev Micropaleont 46:35–46CrossRefGoogle Scholar
  28. Mamet B, Préat A (2005) Why is ‘red marble’ red? Revist Espanol Micropaleont 37:13–21Google Scholar
  29. Mamet B, Préat A (2006) Iron-bacterial mediation in Phanerozoic red limestones: state of the art. Sediment Geol 185:147–157CrossRefGoogle Scholar
  30. Mamet B, Préat A (2007) Jurassic microfacies, Ammonitico Rosso Limestone, Subbetic Cordillera, Spain. Revist Espanol Micropaleont 38:219–228Google Scholar
  31. Mamet B, Préat A, De Ridder Ch (1997) Bacterial origin of the red pigmentation, Devonian Slivenec Limestone, Czech Republic. Facies 36:47–51CrossRefGoogle Scholar
  32. Munn CB (2004) Marine microbiology: ecology and application. Garland, London, 282 ppGoogle Scholar
  33. Perry CT, Macdonald IA (2002) Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 186:101–113CrossRefGoogle Scholar
  34. Préat A, Mamet B, Bernard A, Gillan D (1999) Bacterial mediation red matrices diagenesis, Devonian, Montagne Noire (southern France). Sediment Geol 126:223–243CrossRefGoogle Scholar
  35. Préat A, Morano S, Loreau JL, Durlet C, Mamet B (2006) Petrography and biosedimentology of the Rosso Ammonitico Veronese (middle-upper Jurassic, north-eastern Italy). Facies 52:265–278CrossRefGoogle Scholar
  36. Stolp H (1998) Microbial ecology: organisms, habitats, activities. Cambridge Studies in Ecology, Cambridge University Press, London, 308 ppGoogle Scholar
  37. Tahiri A, El Hassani A (eds) (2000) Proceedings on the Subcommission on Devonian Stratigraphy (SDS): IGCP 421 Morocco Meeting. Travaux Inst Sci, sér Géol-Géogr Phys 20:1–115Google Scholar
  38. Wagreich M, Krenmayr HG (2005) Upper Cretaceous oceanic red beds (CORB) in the Northern Calcareous Alps (Nirental Formation, Austria): slope topography and clastic input as primary controlling factors. Cretac Res 26:57–64CrossRefGoogle Scholar
  39. Wendt J, Aigner T, Neugebauer J (1984) Cephalopod limestone deposition on a shallow pelagic ridge: the Tafilalt Platform (upper Devonian, eastern Anti-Atlas, Morocco). Sedimentology 31:601–665CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Département des Sciences de la Terre et de l’EnvironnementUniversité libre de BruxellesBrusselsBelgium
  2. 2.Institut ScientifiqueUniversité Mohammed V AgdalRabat-AgdalMorocco

Personalised recommendations