Skip to main content

Advertisement

Log in

Earliest Triassic microbialites in the South China block and other areas: controls on their growth and distribution

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alvarez W, O’Connor D (2002) Permian–Triassic boundary in the southwestern United States: hiatus or continuity? In: Koerberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geol Soc Am Spec Pap 356:385–393

  • Armella C (1994) Thrombolitic-stromatolitic cycles of the Cambro-Ordovician boundary sequence, Precordillera Oriental Basin, western Argentina. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II. Kluwer, Dordrecht, pp 421–442

    Google Scholar 

  • Baud A, Richoz S, Marcoux J (2005) Calcimicrobial cap rocks from the basal Triassic units: western Taurus occurrences (SW Turkey). C R Paleovol 4:569–582

    Article  Google Scholar 

  • Baud A, Richoz S, Pruss S (2006) The lower Triassic anachronistic carbonate facies in time and space. Glob Planet Change 55:81–89

    Article  Google Scholar 

  • Beauchamp B, Baud A (2002) Growth and demise of Permian biogenic chert along northwest Pangaea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeogr Palaeoclimatol Palaeoecol 184:37–63

    Article  Google Scholar 

  • Berner RA (2005) The carbon and sulphur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim Cosmochim Acta 69:3211–3217

    Article  Google Scholar 

  • Berner RA, Ward PD (2006) Positive reinforcement, H2S, and the Permo-Triassic extinction: comment. Geol Soc Am Bull. doi:101130:G22641.1

  • Bissell HJ (1973) Permian–Triassic boundary in the eastern Great Basin area. In: Logan A, Hills LV (eds) Permian and Triassic systems and their mutual boundary. Can Soc Pet Geol Mem 2:318–344

  • Bottrell SH, Newton RJ (2006) Reconstruction of changes in the global sulphur cycling from marine sulphate isotopes. Earth Sci Rev 75:59–83

    Article  Google Scholar 

  • Brookfield ME, Twitchett RJ, Goodings C (2003) Palaeoenvironments of the Permian–Triassic transition sections in Kashmir, India. Palaeogeogr Palaeoclimatol Palaeoecol 198:353–371

    Article  Google Scholar 

  • Calner M (2005) A late Silurian extinction event and anachronistic period. Geology 33:305–308

    Article  Google Scholar 

  • Chen D, Tucker ME, Shen Y, Yans J, Preat A (2002) Carbon isotope excursions and sea-level change: implications for the Frasnian-Famennian biotic crisis. J Geol Soc Lond 159:623–626

    Article  Google Scholar 

  • Crasquin-Soleau S, Kershaw S (2005) Ostracod fauna from the Permian–Triassic boundary interval of South China (Huaying Mountains, eastern Sichuan Province): palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 217:131–141

    Article  Google Scholar 

  • Crasquin-Soleau S, Galfetti T, Bucher H, Brayard A (2006) Delayed marine faunal turnover after the end-Permian mass extinction: early Triassic ostracods from northwestern Guangxi Province, South China. Riv Ital Paleontol Stratigr 112:55–75

    Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324:55–58

    Article  Google Scholar 

  • Dravis JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219:385–386

    Article  Google Scholar 

  • Erwin DH (2006) Extinction. Princeton University Press, Princeton, 296 pp

    Google Scholar 

  • Escher A, Watt S W (1976) Geology of Greenland. The geological survey of Greenland. Copenhagen, 603 pp

  • Ezaki Y, Liu J, Adachi N (2003) Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province, South China: implications for the nature of oceanic conditions after the end-Permian extinction. Palaios 18:388–402

    Google Scholar 

  • Fang Z (2006) Major bio-events in Permian–Triassic reef ecosystems of South China and their bearing on extinction-survival-recovery problems. In: Rong J, Fang Z (eds) Mass extinction and recovery; evidences from the Palaeozoic and Triassic of South China, vol II. University of Science and Technology of China Press, Beijing, pp 1063–1065

  • Flügel E (2002) Triassic reef patterns. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:391–463

  • Foster CB, Afonin SA (2005) Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian–Triassic boundary. J Geol Soc 162:653–659

    Article  Google Scholar 

  • Fraiser ML, Twitchett RJ, Bottjer DJ (2005) Unique microgastropod facies in the early Triassic: indicator of long-term biotic stress and the pattern of biotic recovery after the end-Permian mass extinction. C R Palevol 4:543–552

    Article  Google Scholar 

  • Garzanti E, Nicora A, Rettori R (1998) Permo-Triassic boundary and lower to middle Triassic in south Tibet. J Asian Earth Sci 16:143–157

    Article  Google Scholar 

  • Goldhammer RK, Lehmann PJ, Dunn PA (1993) The origin of high-frequency platform carbonate cycles and third-order sequences (Lower Ordovician El Paso Gp, west Texas): constraints from outcrop data and stratigraphic modelling. J Sediment Petrol 63:318–359

    Google Scholar 

  • Golonka J (2002) Plate-tectonic maps of the Phanerozoic. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:21–76

  • Grice K, Cao C-Q, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin Y-G (2005a) Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307:706–709

    Article  Google Scholar 

  • Grice K, Twitchett RJ, Alexander R, Foster CB, Looy C (2005b) A potential biomarker for the Permian–Triassic ecological crisis. Earth Planet Sci Lett 236:315–321

    Article  Google Scholar 

  • Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10:578–596

    Article  Google Scholar 

  • Haas J, Demény A, Hips K, Vennemann TW (2006) Carbon isotope excursions and microfacies changes in marine Permian–Triassic boundary sections in Hungary. Palaeogeogr Palaeoclimatol Palaeoecol 237:160–181

    Article  Google Scholar 

  • Heydari E, Hassandzadeh J, Wade WJ (2000) Geochemistry of central Tethyan upper Permian and lower Triassic strata, Abadeh region, Iran. Sediment Geol 137:85–99

    Article  Google Scholar 

  • Hips K, Haas J (2006) Calcimicrobial stromatolites at the Permian–Triassic boundary in a western Tethyan section, Bükk, Hungary. Sediment Geol 185:239–253

    Article  Google Scholar 

  • Hotinski RM, Bice KL, Kump LR, Naijir RG, Arthur MA (2001) Ocean stagnation and end-Permian anoxia. Geology 29:7–10

    Article  Google Scholar 

  • Isozaki Y (1997) Permo-Triassic superanoxia and stratified superocean: records from the lost deep sea. Science 276:235–238

    Article  Google Scholar 

  • Kaiho K, Chen Z-Q, Kawahata H, Kajiwara Y, Sato H (2006) Close-up of the end-Permian mass extinction horizon recorded in the Meishan section, South China: sedimentary, elemental, and biotic characterization and a negative shift of sulphate sulphur isotope ratio. Palaeogeogr Palaeoclimatol Palaeoecol 239:396–405

    Article  Google Scholar 

  • Kakuwa Y, Matsumoto R (2006) Cerium negative anomaly just before the Permian and Triassic boundary event: the upward expansion of anoxia in the water column. Palaeogeogr Palaeoclimatol Palaeoecol 229:335–344

    Article  Google Scholar 

  • Kempe S (1990) Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaften 77:426–427

    Article  Google Scholar 

  • Kennard JM (1994) Thrombolites and stromatolites within shale-carbonate cycles, middle-late Cambrian Shannon formation, Amadeus Basin, central Australia. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic stromatolites II. Kluwer, Dordrecht, pp 443–741

    Google Scholar 

  • Kershaw S (2004) Comment: earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province, South China: implications for the nature of oceanic conditions after the end-Permian extinction (Ezaki et al. 2003). Palaios 19:418–420

    Google Scholar 

  • Kershaw S, Zhang T, Lan G (1999) A microbialite crust at the Permian–Triassic boundary in south China, and its palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 146:1–18

    Article  Google Scholar 

  • Kershaw S, Guo L, Swift A, Fan J (2002) Microbialites in the Permian–Triassic boundary interval in central China: structure, age and distribution. Facies 47:83–90

    Google Scholar 

  • Kidder DL, Worsley TR (2004) Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeogr Palaeoclimatol Palaeoecol 203:207–237

    Article  Google Scholar 

  • Kiehl JT, Shields CA (2005) Climate simulation of the latest Permian: implications for mass extinction. Geology 33:757–760

    Article  Google Scholar 

  • Krull ES, Lehrmann DJ, Druke D, Kessel B, Yu Y, Li R (2004) Stable carbon isotope stratigraphy across the Permian–Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, South China. Palaeogeogr Palaeoclimatol Palaeoecol 204:297–315

    Article  Google Scholar 

  • Krystyn L, Richoz S, Baud A, Twitchett R (2003) A unique Permian–Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains. Palaeogeogr Palaeoclimatol Palaeoecol 191:329–344

    Article  Google Scholar 

  • Kump LR (2005) Massive release of hydrogen sulphide to the surface ocean and atmosphere during intervals of ocean anoxia. Geology 33:397–400

    Article  Google Scholar 

  • Kump LR, Pavlov A, Arthur MA (2006). Positive reinforcement, H2S, and the Permo-Triassic extinction: reply. Geol Soc Am Bull. doi:10.1130/G22836.1

  • Lehrmann DJ (1999) Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin, South China. Geology 27:359–362

    Article  Google Scholar 

  • Lehrmann DJ, Wan Y, Wei J, Yu Y, Xiao J (2001) Lower Triassic peritidal cyclic limestone: an example of anachronistic carbonate facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou Province, South China. Palaeogeogr Palaeoclimatol Palaeoecol 173:103–123

    Article  Google Scholar 

  • Lehrmann DL, Payne JL, Felix SV, Dillett PM, Wang H, Yu Y, Wei J (2003) Permian–Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, South China: implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios 18:138–152

    Google Scholar 

  • Liu J, Ezaki Y, Yang S (2006) High-resolution environmental reconstruction of the aftermath of the end-Permian mass extinction: evidence from microbialite successions in South China. In: Yang Q, Wang Y, Weldon E (eds) Ancient life and modern approaches. Abstracts of the Second International Palaeontological Congress, Beijing, 17–21 June 2006, pp 208–209

  • Mu X, Guo L, Kershaw S, Qi Y (2001) The microbialite crust at Permian–Triassic boundary interval in E. Sichuan, China. In: Bucur I, Tantau I (eds) Fourth Regional Symposium of IFAA, Cluj-Napoca, Romania, 29 August–5 September 2001, Abstracts, pp 38–39

  • Payne J, Lehrmann DJ, Wei J, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509

    Article  Google Scholar 

  • Perch-Nielsen K, Bromley RG, Birkenmajer K, Aellen M (1972) Field observations in Palaeozoic and Mesozoic sediments of Scoresby Land and northern Jameson Land. Rapp Gronl Geol Unders 48:39–59

    Google Scholar 

  • Pruss SB, Bottjer DJ, Corsetti FA, Baud A (2006) A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States. Earth Sci Rev 78:193–206

    Article  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(Suppl 1):179–214

    Article  Google Scholar 

  • Riding R (2005) Phanerozoic reefal microbial carbonate abundance: comparisons with metazoan diversity, mass extinction events, and seawater saturation state. Rev Esp de Micropaleontol 37:23–39

    Google Scholar 

  • Riding R, Liang L (2005) Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeogr Palaeoclimatol Palaeoecol 219:101–115

    Article  Google Scholar 

  • Ryskin G (2003) Methane-driven oceanic eruptions and mass extinctions. Geology 31:741–744

    Article  Google Scholar 

  • Saltzman MR (2005) Phosphorus, nitrogen, and the redox evolution of the Palaeozoic oceans. Geology 33:573–576

    Article  Google Scholar 

  • Sandler A, Eshet Y, Schilman B (2006) Evidence for a fungal event, methane hydrate release and soil erosion at the Permian–Triassic boundary in southern Israel. Palaeogeogr Palaeoclimatol Palaeoecol 242:68–89

    Article  Google Scholar 

  • Sano H, Nakashima K (1997) Lowermost Triassic (Griesbachian) microbial bindstone-cementstone facies, southwest Japan. Facies 36:1–24

    Article  Google Scholar 

  • Schubert JK, Bottjer DJ (1992) Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20:883–886

    Article  Google Scholar 

  • Sephton MA, Looy CV, Brinkhuis H, Wignall PB, de Leeuw JW, Visscher H (2005) Catastrophic soil erosion during the end-Permian biotic crisis. Geology 33:941–944

    Article  Google Scholar 

  • Sepkoski JJ Jr, Bambach RK, Droser ML (1991) Secular changes in Phanerozoic event bedding and the biological overprint. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 298–312

    Google Scholar 

  • Sheehan P, Harris M (2004) Microbialite resurgence after the late Ordovician extinction. Nature 430:75–78

    Article  Google Scholar 

  • Sheldon N (2006) Abrupt chemical weathering increase across the Permian–Triassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 231:315–321

    Article  Google Scholar 

  • Tong J, Yin H (2002) The lower Triassic of South China. J Asian Earth Sci 20:803–815

    Article  Google Scholar 

  • Twitchett RJ (2004) Trace fossils in the aftermath of mass extinction events. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental stratigraphic analysis. Geol Soc Lond Spec Publ 238:397–418

  • Twitchett RJ (2006) The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeogr Palaeoclimatol Palaeoecol 232:190–213

    Article  Google Scholar 

  • Twitchett RJ, Krystyn L, Baud A, Wheeley JR, Richoz S (2004) Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine biota. Geology 32:805–808

    Article  Google Scholar 

  • Valentine JW, Moores EM (1973) Provinciality and diversity across the Permian–Triassic boundary. In: Logan A, Hills LV (eds) Permian and Triassic systems and their mutual boundary. Can Soc Pet Geol Mem 2:759–766

  • Wang Y, Jin Y (2000) Permian palaeogeographic evolution of the Jiangnan Basin, South China. Palaeogeogr Palaeoclimatol Palaeoecol 160:35–44

    Article  Google Scholar 

  • Wang S, Qiang Z, Wen Y, Tao Y (1994) Petrology and origin of the calcareous crusts capping the Permian reefs in Huaying Mountains, Sichuan, China (in Chinese). J Mineral Petrol 14:59–68

    Google Scholar 

  • Wang W, Matsumoto R, Kakuwa Y, Mahmudy Gharaie MH, Li Y, Kano A, Matsuda N, Jansa L, Ueno K, Milroy P, Rahmati Ilkhchi M (2005) Chemostratigraphy of carbon and strontium isotope on Permo-Triassic boundary in Zagros Moutains, Aligoudarz, Iran. Permophiles 45:31–36

    Google Scholar 

  • Weidlich O, Kiessling W, Flügel E (2003) Permian–Triassic boundary interval as a model for forcing marine ecosystem collapse by long-term atmospheric oxygen drop. Geology 31:961–964

    Article  Google Scholar 

  • Whalen MT, Day J, Eberli GP, Homewood PW (2002) Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the Late Devonian, Alberta Basin, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 181:127–151

    Article  Google Scholar 

  • Wignall PB, Hallam A (1992) Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr Palaeoclimatol Palaeoecol 93:21–46

    Article  Google Scholar 

  • Wignall PB, Hallam A (1993) Griesbachian (Earliest Triassic) palaeoenvironmental changes in the Salt Range, Pakistan, and southeast China and their bearing on the Permo-Triassic mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 102:215–237

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (2002) Extent, duration and nature of the Permian–Triassic superanoxic event. In: Koerberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geol Soc America Spec Pap 356:395–413

  • Winguth AME, Maier-Reimer E (2005) Causes of the marine productivity and oxygen changes associated with the Permian–Triassic boundary: a reevaluation with ocean general circulation models. Mar Geol 217:283–304

    Article  Google Scholar 

  • Woods AD, Bottjer DJ, Mutti M, Morrison J (1999) Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology 27:645–648

    Article  Google Scholar 

  • Yang H, Zhang S, Jiang H, Wang Y (2006) Age and general characteristics of calcimicrobialite near the Permian–Triassic boundary in Chongyang, Hubei Province. Earth Sci J China 31:165–170

    Google Scholar 

Download references

Acknowledgements

Work by SC-S, P-YC, SK and FQ in Guizhou is supported by French Eclipse 2 and CNRS-PICS programmes. Work by SK, XM and LY in Sichuan/Chongqing is supported by China NNSF grant 40572069. We thank Wang Wei for providing the thin section illustrated in Fig. 9. SK thanks Brad Cramer, Robert Riding and Richard Twitchett for discussions. Two anonymous referees are thanked for their valuable comments that have led to significant improvements of this paper. We are grateful to Wang Hongbo, Guo Yi, Guo Yong, Yu Youyi and Gu Songzhu for their help in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Kershaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kershaw, S., Li, Y., Crasquin-Soleau, S. et al. Earliest Triassic microbialites in the South China block and other areas: controls on their growth and distribution. Facies 53, 409–425 (2007). https://doi.org/10.1007/s10347-007-0105-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-007-0105-5

Keywords