Skip to main content

Advertisement

Log in

Microstructure, growth banding and age determination of a primnoid gorgonian skeleton (Octocorallia) from the late Younger Dryas to earliest Holocene of the Bay of Biscay

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

A fossil primnoid gorgonian skeleton (Octocorallia) was recovered on the eastern Galician Massif in the Bay of Biscay (NE Atlantic) from 720 m water depth. The skeleton shows a growth banding of alternating Mg–calcitic and organic (gorgonin) increments in the inner part, surrounded by a ring of massive fibrous calcite. Three calcite-dominated cycles, bounded by thick organic layers, consist of five light-dark couplets of calcite and gorgonin. Two AMS-14C datings of the fossil skeleton give ages of 10,880 and 10,820 ± 45 14C years before present (BP). We arrive at a calibrated age range of 11,829–10,072 cal. years BP (two σ), which comprises the late Younger Dryas to the earliest part of the Holocene. The cyclic calcitic–organic growth banding may be controlled by a constant rate of calcite secretion with a fluctuating rate of gorgonin production, possibly related to productivity cycles. The skeletal fabric change of alternating calcitic–organic increments to massive fibrous calcite may be the result of hydrographic changes during the deglaciation as reflected by preliminary stable isotope data. If this hypothesis proves to be correct, primnoid gorgonians are able to match with varying hydrodynamic conditions by changing their biomineralisation mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adkins JD, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143

    Article  Google Scholar 

  • Andrews AH, Cordes EE, Mahoney MM, Munk K, Coale KH, Cailliet GM, Heifetz J (2002) Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471:101–110

    Article  Google Scholar 

  • Berger WH, Jansen E (1995) Younger Dryas episode: ice collapse and superfjord heat pump. In: Troelstra SR, van Hinte JE, Ganssen GM (eds) The Younger Dryas. North-Holland, Amsterdam, pp 61–105

    Google Scholar 

  • Broecker WS, Olson EA (1961) Lamont radiocarbon measurements VIII. Radiocarbon 3:176–204

    Google Scholar 

  • Cohen AL, McConnaughey TA (2003) A geochemical perspective on coral mineralization. In: Dove M, Weiner S, de Yoreo J (eds) Biomineralization. Rev Miner Geochem 54:151–187

  • Grasshoff M, Zibrowius H (1983) Kalkkrusten auf Achsen von Hornkorallen, rezent und fossil (Cnidaria, Anthozoa, Gorgonaria). Senckenbergiana marit 15:111–145

    Google Scholar 

  • Griffin SM, Druffel ERM (1989) Sources of carbon to deep-sea corals. Radiocarbon 31:533–543

    Google Scholar 

  • Harkness DD (1983) The extent of the natural 14C deficiency in the coastal environment of the United Kingdom. J Eur Study Group Phys Chem Math Tech Appl Archaeol PACT 8(IV.9):351–364

    Google Scholar 

  • Heikoop JM, Risk MJ, Lazier AV, Schwarcz HP (1998) δ13C and δ18O of a deep-sea gorgonian coral from the Atlantic coast of Canada. EOS 79(17):179

    Google Scholar 

  • Heikoop HM, Hickmott DD, Risk MJ, Shearer CK, Atudorei V (2002) Potential climate signals from the deep-sea gorgonian coral Primnoa resedaeformis. Hydrobiologia 471:117–124

    Article  Google Scholar 

  • Hughen KA, Baillie MGL, Bard E, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer PJ, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) Marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1059–1086

    Google Scholar 

  • Labeyrie LD, Duplessy J-C, Duprat J, Juillet-Leclerc A, Moys J, Michel E, Kallel N, Shackelton NJ (1992) Changes in vertical structure of the North Atlantic Ocean between glacial and modern times. Quaternary Sci Rev 11:401–413

    Article  Google Scholar 

  • Le Danois ED (1948) Les profondeurs de la mer. Payot, Paris, 303 pp

    Google Scholar 

  • Lucas JM, Knapp LW (1997) A physiological evaluation of carbon sources for calcification in the octocoral Leptogorgia virgulata (Lamarck). J Exp Biol 200:2653–2662

    Google Scholar 

  • McCartney MS (1992) Recirculating components to the deep boundary current of the northern North Atlantic. Prog Oceanogr 29:283–383

    Article  Google Scholar 

  • McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. patterns. Geochim Cosmochim Acta 53:151–162

    Article  Google Scholar 

  • Nadeau MJ, Grootes PM, Schleicher M, Hasselberg P, Rieck A, Bitterling M (1998) Sample throughout and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(special issue):239–245

    Google Scholar 

  • Noé SU, Dullo W-Chr (2006) Skeletal morphogenesis and growth mode of modern and fossil deep-water isidid gorgonians (Octocorallia) in the West Pacific (New Zealand and Sea of Okhotsk). Coral Reefs 25:303–320

    Article  Google Scholar 

  • Risk MJ, Heikoop JM, Snow MG, Beukens R (2002) Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471:125–131

    Article  Google Scholar 

  • Robinson LF, Adkins JF, Keigwin LD, Southon J, Fernandez DP, Wang S-L, Scheirer DS (2005) Radiocarbon variability in the western North Atlantic during the last deglaciation. Science 310:1469–1473

    Article  Google Scholar 

  • Schröder-Ritzrau A, Mangini A, Lomitschka M (2003) Deep-sea corals evidence periodic reduced ventilation in the North Atlantic during the LGM/Holocene transition. Earth Planet Sci Lett 216:399–410

    Article  Google Scholar 

  • Sherwood OA, Heikoop JM, Sinclair DJ, Scott DB, Risk MJ, Shearer C, Azetsu-Scott K (2005a) Skeletal Mg/Ca in Primnoa resedaeformis: relationship to paleotemperature? In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, pp 1061–1079

    Chapter  Google Scholar 

  • Sherwood OA, Scott DB, Risk MJ, Guilderson TP (2005b) Radiocarbon evidence for annual growth rings in the deep-sea octocoral Primnoa resedaeformis. Mar Ecol Prog Ser 301:129–134

    Google Scholar 

  • Sherwood OA, Heikoop JM, Scott DB, Risk MJ, Guilderson TP, McKinney RA (2005c) Stable isotope composition of deep-sea gorgonian corals Primnoa spp.: a new archive of surface processes. Mar Ecol Prog Ser 301:135–148

    Google Scholar 

  • Sinclair DJ, Sherwood OA, Risk MJ, Hillaire-Marcel C, Tubrett M, Slyvester P, McCulloch M, Kinsley L (2005) Testing the reproducibility of Mg/Ca profiles in the deep-water coral Primnoa resedaeformis: putting the proxy through its paces. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg, pp 1039–1060

    Chapter  Google Scholar 

  • Smith JE, Risk MJ, Schwarcz HP, McConnaughey TA (1997) Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals. Nature 386:818–820

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Waelbroeck C, Duplessy J-C, Michel E, Labeyrie L, Paillard D, Duprat J (2001) The timing of the last deglaciation in North Atlantic climate records. Nature 412:724–727

    Article  Google Scholar 

Download references

Acknowledgments

R/V Belgica´ s “GALIPOR” cruise (2004) was a contribution to the EU “EURODOM” Research and Training Network (HPRN-CT-2002-00212) and the ESF EuroMargins “MoundForce” project (DU 129/43 + FR 1134/8). We are indebted to Prof. Dr. P.M. Grootes and his team (Leibniz Laboratory for Age Determination and Isotope Research at Kiel) for radiocarbon measurements and to D. Dettmar (Bochum) for thin-section preparation. J. Reveillaud acknowledges support of a EURODOM PhD grant and an IWT-Flanders PhD research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibylle Noé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noé, S., Lembke-Jene, L., Reveillaud, J. et al. Microstructure, growth banding and age determination of a primnoid gorgonian skeleton (Octocorallia) from the late Younger Dryas to earliest Holocene of the Bay of Biscay. Facies 53, 177–188 (2007). https://doi.org/10.1007/s10347-007-0104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-007-0104-6

Keywords

Navigation