Skip to main content
Log in

Sponge communities from the Lower Liassic of Adnet (Northern Calcareous Alps, Austria)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The lower slope of the drowned Alpine Adnet Reef was recolonized in Hettangian time by sponge communities of hexactinellid (hexactinosid and lyssacinosid) taxa and a few demosponges. Special taphonomic processes caused an excellent preservation of these sponges. The preservation allows to define several growth forms and to study original spicule configurations of the mainly non-rigid skeletons. Sponge faunas of presumably similar associations are known from adjacent basins, but only by isolated spicules of completely collapsed specimens. In Adnet the sponges are embedded in biodetrital limestones of the Schnöll Formation. Orientation and distribution of the sponges reflect autochthonous faunas that have been mixed with dislocated individuals by local water currents. The predominance of erect sponge types indicates intermediate sedimentation rates and/or occasional high-energy events. Sponge types and community structures are comparable with those ones from Middle Paleozoic mud mounds. Several hiatuses, mostly characterized by ferromanganese crusts have been kept free of sponge settlement. Carbon stable isotopes of the sponge-rich sequence show a small negative δ13Ccarb excursion that covers the period from Lower Hettangian to Lower Sinemurian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aubrecht R, Szulc J, Michalík J, Schlögl J, Wagreich M (2002) Middle Jurassic stromatactis mud-mounds in the Pieniny Klippen Belt (Western Carpathians). Facies 47:113–126

    Google Scholar 

  • Bathurst RGC (1975) Carbonate sediments and their diagenesis. Dev Sediment 12:1–658

    Google Scholar 

  • Bechstädt T (1974) Sind Stromatactis und radiaxial-fibröser Calcit Faziesindikatoren. N Jb Geol Paläont, Mh 1974:643–663

    Google Scholar 

  • Beerling DJ, Berner RA (2002) Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event. Global Biogeochem Cycles 16:101–113

    Article  Google Scholar 

  • Benton MJ (1991) What really happened in the Late Triassic? Hist Biol 5:263–278

    Google Scholar 

  • Blau J, Grün B (1996) Sedimentologische Beobachtungen im Rot-Grau-Schnöll-Bruch (Hettangium/Sinemurium) von Adnet (Österreich). Giessener Geol Schr 56:95–106

    Google Scholar 

  • Böhm F (2003) Lithostratigraphy of the Adnet Group (Lower to Middle Jurassic, Salzburg, Austria). In: Piller WE (ed) Stratigraphia Austriaca, vol. 16. Österr Akad Wiss, Schriftenr Erdwiss Komm, pp 231–268

    Google Scholar 

  • Böhm F, Ebli O, Krystyn L, Lobitzer H, Rakús M, Siblík M (1999) Fauna, stratigraphy and depositional environment of the Hettangian-Sinemurian (Early Jurassic) of Adnet (Salzburg, Austria). Abh Geol Bundesanst Wien 56:143–271

    Google Scholar 

  • Bourque P-A, Boulvain F (1993) A model for the origin and petrogenesis of the red stromatactis limestone of Paleozoic carbonate mounds. J Sediment Petrol 63:607–619

    Google Scholar 

  • Bourque P-A, Gignac H (1983) Sponge-constructed stromatactis mud mounds, Silurian of Gaspé, Québec. J Sediment Petrol 53:521–532

    Google Scholar 

  • Brückner A (2003) An exceptionally preserved lyssacinosan sponge fauna (Porifera, Hexactinellida) from the Upper Cretaceous (Coniac) of Bornholm. Boll Mus Ist Biol Univ Genova 66–67:35

    Google Scholar 

  • Brückner A, Janussen D, Schneider S (2003) Eine neue Poriferen-Fauna aus dem Septarienton (Oligozän, Rupelium) von Bad Freienwalde (NE-Deutschland) und der erste fossil erhaltene Vertreter der nicht-rigiden Hexactinelliden-Gattung Asconema. Paläont Z 77:263–280

    Google Scholar 

  • Delecat S, Peckmann J, Reitner J (2001) Non-rigid cryptic sponges in oyster patch reefs (Lower Kimmeridgian, Langenberg/Oker, Germany). Facies 45:231–254

    Google Scholar 

  • Dickens RG, O’Neil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965–971

    Google Scholar 

  • du Dresnay R, Termier G, Termier H (1978) Les Hexactinellides (Lyssakides et Dictyonines) du Lias marocain. Géobios 11:269–295

    Google Scholar 

  • Flajs G, Hüssner H (1993) A microbial model for the Lower Devonian stromatactis mud mounds of the Montagne Noire (France). Facies 29:179–194

    Google Scholar 

  • Flajs G, Hüssner H, Vigener M (1996) Stromatactis mud mounds in the Upper Emsian of the Montagne Noire (France). Formation and diagenesis of stromatactis structures. In: Reitner J, Neuweiler F, Gunkel F (eds) global and regional controls on biogenic sedimentation. I. Reef evolution. Research Reports. Göttinger Arb, Geol Paläont Sb2:345–348

  • Flügel E, Kiessling W (2002) Patterns of Phanerozoic reef crises. In: Kiessling W, Flügel E (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:691–733

    Google Scholar 

  • Franke W, Paul J (1980) Pelagic redbeds in the Devonian of Germany—deposition and diagenesis. Sediment Geol 25:231–256

    Article  Google Scholar 

  • Grimm WD (1962) Idiomorphe Quarze als Leitmineralien für salinare Fazies. Erdöl Kohle Erdgas Petrochem 11:880–887

    Google Scholar 

  • Guex J, Bartolini A, Taylor D (2002) Discovery of Neophyllites (Ammonitina, Cephalopoda, Early Hettangian) in the New York Canyon sections (Gabbs Valley Range, Nevada) and discussion of the δ13C negative anomalies located around the Triassic-Jurassic boundary. Bull Géol Univ Lausanne 355:247–255

    Google Scholar 

  • Hallam A (1981) The End-Triassic bivalve extinction event. Palaeogeogr Palaeoclimatol Palaeoecol 35:1–44

    Google Scholar 

  • Hallam A (1989) The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Phil Trans R Soc London B 325:437–455

    Google Scholar 

  • Hallam A (1990) The end-Triassic mass extinction event. Geol Soc Amer, Spec Pap 247:577–583

    Google Scholar 

  • Hallam A, Goodfellow WD (1990) Facies and geochemical evidence bearing on the end-Triassic disappearance of the Alpine Reef Ecosystem. Hist Biol 4:131–138

    Google Scholar 

  • Hallam A, Wignall, (1997) Mass extinctions and their aftermath. Oxford University Press, New York

  • Harries PJ, Kauffman EG, Hansen TA (1996) Models for biotic survival following mass extinction. Geol Soc, Spec Publ 102:41–60

    Google Scholar 

  • Hautmann M (2004) Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies 50:257–261

    Article  Google Scholar 

  • Heckel PH (1972) Possible inorganic origin for stromatactis in calcilutite mounds in the Tully Limestone, Devonian of New York. J Sediment Petrol 42:7–18

    Google Scholar 

  • Hesselbo SP, Robinson SA, Surlyk F, Piasecki S (2002) Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation. A link to initiation of massive volcanism? Geology 30:251–254

    Google Scholar 

  • Hoefs J (1997) Stable isotope geochemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hooper JNA, Van Soest RWM (2002) Systema Porifera. In: A guide to the classification of sponges. Kluwer Academic, Plenum Publishers, New York

  • Ijima I (1926) Hexactinellida of the Siboga expedition. In: Weber M (ed) Uitkomsten op zoologisch, botanisch, oceanographisch et geologisch gebied versameld in Nederlansk Oost-Indie 1899–1900, vol. 6. Brill, Leiden, pp 1–138

    Google Scholar 

  • Kieslinger A (1964) Die nutzbaren Gesteine Salzburgs. Salzburg, Berglandbuch

    Google Scholar 

  • Krainer K, Mostler H (1997) Die Lias-Beckenentwicklung der Unkener Synklinale (Nördliche Kalkalpen, Salzburg) unter besonderer Berücksichtigung der Scheibelberg Formation. Geol Paläont Mitt Innsbruck 22:1–41

    Google Scholar 

  • Krause FF, Scotese CR, Nieto C, Sayegh SG, Hopkins JC, Meyer RO (2004) Paleozoic stromatactis and zebra carbonate mud-mounds: Global abundance and paleogeographic distribution. Geology 32:181–184

    Article  Google Scholar 

  • Krautter K (1996) Kieselschwämme aus dem unterjurassischen Misonekalk der Trento-Plattform (Südalpen): Taxonomie und phylogenetische Relevanz. Paläont Z 70:301–313

    Google Scholar 

  • Londry KL, Des Marais DJ (2003) Stable carbon isotope fractionation by sulfate-reducing Bacteria. Appl Environ Microbiol 69:2942–2949

    PubMed  Google Scholar 

  • Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, De Min A (1999) Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284:616–618

    Article  PubMed  Google Scholar 

  • McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–1390

    Article  PubMed  Google Scholar 

  • McRoberts CA, Furrer H, Jones DS (1997) Palaeoenvironmental interpretation of a Triassic-Jurassic boundary section from western Austria based on palaeoecological and geochemical data. Palaeogeogr Palaeoclimatol Palaeoecol 136:79–95

    Article  Google Scholar 

  • Morante R, Hallam A (1996) Organic carbon isotopic record across the Triassic-Jurassic boundary in Austria and its bearing on the cause of the mass extinction. Geology 24:391–394

    Article  Google Scholar 

  • Mostler H (1989a) Mikroskleren hexactinellider Schwämme aus dem Lias der Nördlichen Kalkalpen. Jb Geol Bundesanst Wien 132:687–700

    Google Scholar 

  • Mostler H (1989b) Mit Zygomen ausgestattete Dermalia von Kieselschwämmen (Desmospongiae) aus pelagischen Sedimenten der Obertrias und des unteren Jura (Nördliche Kalkalpen). Jb Geol Bundesanst Wien 132:701–726

    Google Scholar 

  • Mostler H (1990a) Mikroskleren von Demospongien (Porifera) aus dem basalen Jura der Nördlichen Kalkalpen. Geol Paläont Mitt Innsbruck 17:119–142

    Google Scholar 

  • Mostler H (1990b) Hexactinellide Poriferen aus pelagischen Kieselkalken (Unterer Lias, Nördliche Kalkalpen). Geol Paläont Mitt Innsbruck 17:143–178

    Google Scholar 

  • Neuweiler F, Mehdi M, Wilmsen M (2001a) Facies of Liassic Sponge Mounds, Central High Atlas, Morocco. Facies 44:243–264

    Google Scholar 

  • Neuweiler F, Bourque P-A, Boulvain F (2001b) Why is stromatactis so rare in Mesozoic carbonate mud mounds? Terra Nova 13:333–337

    Article  Google Scholar 

  • Olsen PE, Kent DV, Sues H-D, Koeberl C, Huber H, Montanari A, Rainforth EC, Fowell SJ, Szajna MJ, Hartline BW (2002) Ascent of dinosaurs linked to an Iridium anomaly at the Triassic-Jurassic boundary. Science 296:1305–1307

    Article  PubMed  Google Scholar 

  • Pálfy J, Demény A, Haas J, Hetényi M, Orchard MJ, Vető I (2001) Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29:1047–1050

    Article  Google Scholar 

  • Rakus M, Lobitzer H (1993) Early Liassic ammonites from the Steinplatte-Kammerköhralm area (Northern Calcareous Alps/Salzburg). Jb Geol Bundesanst Wien 136:919–932

    Google Scholar 

  • Reitner J (1986) A comparative study of the diagenesis in diapir-influenced reef atolls and a fault block reef platform in the Late Albian of the Vasco-Cantabrian Basin (Northern Spain). In: Schröder JH, Purser BH (eds) Reef diagenesis. Springer, Berlin Heidelberg New York, pp 186–209

    Google Scholar 

  • Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) formation and concepts. Facies 29:3-40

    Google Scholar 

  • Reitner J, Neuweiler F (1995) Mud mounds: a polygenetic spectrum of fine-grained carbonate buildups. Facies 32:1–70

    Google Scholar 

  • Reitner J, Schumann-Kindel G (1997) Pyrite in mineralized sponge tissue—Product of sulfate reducing sponge related bacteria? In: Neuweiler F, Reitner J, Monty Cl (eds) Biosedimentology of microbial buildups. IGCP Project No. 380, Proceedings of 2nd Meeting, Göttingen/Germany 1996. Facies 36:272–276

    Google Scholar 

  • Schulze FE (1887) Report on the Hexactinellida. In: Murray J (ed) Report on the scientific results of the voyage of H.M.S. Challenger during the years 1873–76. Eyre and Spottiswoode, London, 21, pp 1–513

    Google Scholar 

  • Schulze FE (1904) Hexactinellida. In: Chun C (ed) Wissenschaftliche Ergebnisse der deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899 . 4, pp1–266, G. Fischer, Jena

  • Stanley GD (1988) The history of early Mesozoic reef communities: a three-step process. Palaios 3:170–183

    Google Scholar 

  • Tanner LH, Hubert JF, Coffey BP, McInerney DP (2001) Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary. Nature 411:675–677

    PubMed  Google Scholar 

  • Tsien MM (1985) Origin of stromatactis—a replacement of colonial microbial accretions. In: Toomey DF, Nitecki MH (eds) Paleoalgology. Springer, Berlin Heidelberg New York, pp 274–298

    Google Scholar 

  • Turnšek D, Dolenec T, Siblík M, Ogorelec B, Ebli O, Lobitzer H (1999) Contributions to the fauna (corals, brachiopods) and stable isotopes of the Late Triassic Steinplatte reef/basin-complex, Northern Calcareous Alps, Austria. Abh Geol Bundesanst Wien 56:121–140

    Google Scholar 

  • Vigener M (1996) Mikrofazies, Zementation und Diagenese unterdevonischer Stromatactis-Mud Mounds in der Montagne Noire (Südfrankreich). Aachener Geowiss Beitr 14. Aachen, Augustinus Buchhandlung

  • Ward PD, Haggart JW, Carter ES, Wilbur D, Tipper HW, Evans T (2001) Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292:1148–1151

    Article  PubMed  Google Scholar 

  • Wendt J (1970) Stratigraphische Kondensation in triadischen und jurassischen Cephalopodenkalken der Tethys. N Jb Geol Paläont, Mh 1970, 7:433–448

    Google Scholar 

  • Wiedenmayer F (1963) Obere Trias bis mittlerer Lias zwischen Saltrio and Tremona (Lombardische Alpen). Die Wechselbeziehungen zwischen Stratigraphie, Sedimentologie und syngenetischer Tektonik. Eclogae geol Helv 56:532–640

    Google Scholar 

  • Yapp CJ, Poths H (1996) Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure. Earth Planet Sci Lett 137:71–82

    Article  Google Scholar 

Download references

Acknowledgments

The Deutsche Forschungsgemeinschaft is gratefully acknowledged for financial support (Re 665/17-1, 17-2). We thank Dr. M. Joachimski (Institute of Geology, Erlangen) for stable isotope analyses. Special thanks to Prof. J. Paul, Prof. V. Thiel (both GZG, Göttingen) and Dr. G. Bloos (Natural History Museum, Stuttgart) for helpful comments and the Adnet marble industry “Kiefer” for access to the quarries and generous allocation of large rock material for exhibitions and research. The manuscript was carefully reviewed by Dr. F. Böhm (Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Kiel) and Dr. J. Pálfy (Hungarian Natural History Museum, Budapest). This paper contributes to the IGCP-Project 458 – Triassic-Jurassic Boundary Events: Mass extinction, global environmental change, and driving forces

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Reitner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delecat, S., Reitner, J. Sponge communities from the Lower Liassic of Adnet (Northern Calcareous Alps, Austria). Facies 51, 385–404 (2005). https://doi.org/10.1007/s10347-005-0045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-005-0045-x

Keywords

Navigation