, Volume 50, Issue 3–4, pp 573–614 | Cite as

The reefal margin and slope of a Middle Triassic carbonate platform: the Latemar (Dolomites, Italy)

  • Axel Emmerich
  • Valeria Zamparelli
  • Thilo Bechstädt
  • Rainer Zühlke
Original Article


The Latemar is a mainly aggrading platform, but shows repeated backstepping during its entire development. The behaviour of the slope does not reflect accommodation changes and lateral consistencies of the lagoonal interior; the Latemar contemporaneously reveals different, even contrasting depositional characteristics. The slope of the late stage platform evolution corresponds at least partially to the “base-of-slope apron” model. Controlling factors on slope evolution are of tectonic (proximity of the Stava Line) and autocyclic (repeated oversteepening) nature. Other factors are insignificant and/or overprinted.

The reef-facies at Latemar reveals a complex facies pattern; it varies along and across the margin and is rich in encrusting sponges, corals, biogenic crusts and “Microproblematica”. Some biota or fossil assemblages—e.g. foraminifers (Abriolina mediterranea, Turriglomina scandonei) or “Tubiphytesmultisiphonatus thrombolites—have not been described in the Dolomites before. Biostratigraphic evidence from the uppermost reef-facies confirms a mainly Anisian age of the outcropping platform interior.


Carbonate slope Depositional model Reefal zonation Late Anisian Middle Triassic Dolomites 


  1. Bechstädt T, Brandner R (1970) Das Anis zwischen St. Vigil und dem Höhlensteintal (Pragser und Olanger Dolomiten, Südtirol). Festbd Geol Inst, 300-Jahr-Feier Univ Innsbruck, 9–103Google Scholar
  2. Bernoulli D (1964) Zur Geologie des Monte Generoso (Lombardische Alpen). Beitr geol Karte Schweiz, NF, Bern, 134 ppGoogle Scholar
  3. Biddle KT (1981) The basinal Cipit boulders: indicators of Middle to Upper Triassic buildup margins, Dolomite Alps, Italy. Riv Ital Paleontol Stratigr 86:779–794Google Scholar
  4. Blendinger W (1985) Middle Triassic strike-slip tectonics and igneous activity of the Dolomites (Southern Alps). Tectonophysics 113:105–121CrossRefGoogle Scholar
  5. Blendinger W (1986) Isolated stationary carbonate platforms: the Middle Triassic (Ladinian) of the Marmolada area, Dolomites, Italy. Sedimentology 33:159–183Google Scholar
  6. Blendinger W (2001) Triassic carbonate buildup flanks in the Dolomites, Northern Italy: breccias, boulder fabric and the importance of early diagenesis. Sedimentology 48:919–933CrossRefGoogle Scholar
  7. Bosellini A (1973) Modello geodinamico e paleotettonico delle Alpi Meridionali durante il Giurassico-Cretacico. Sue possibili applicazioni agli Appennini. Acad naz Lincei, Quad 183:163–205Google Scholar
  8. Bosellini A (1984) Progradation geometries of carbonate platforms: examples from the Triassic of the Dolomites, Northern Italy. Sedimentology 31:1–24Google Scholar
  9. Bosellini A (1989) Dynamics of Tethyan carbonate platforms. In: Crevello PD, Wilson JJ, Sarg JF, Read JF (eds) Controls on carbonate platform and basin development. SEPM Spec Publ 44:3–13Google Scholar
  10. Bosellini A, Rossi D (1974) Triassic carbonate buildups of the Dolomites, Northern Italy. In: Laporte LF (ed) Reefs in time and space. SEPM Spec Publ 18:209–233Google Scholar
  11. Bosellini A, Stefani M (1991) The Rosengarten: a platform-to-basin carbonate section (Middle Triassic, Dolomites, Italy). Dolomieu Conference on Carbonate Platforms and Dolomitization. Guidebook Excursion C, 1–24Google Scholar
  12. Bosellini A, Neri C, Stefani M (1996) Geometrie deposizionali e stratigrafia fisica a grande scala di piattaforme carbonatiche triassiche. 78a riunione estiva, Soc geol ital, San Cassiano. Guidebook 1–36Google Scholar
  13. Brack P, Mundil R, Oberli F, Meier M, Rieber H (1996) Biostratigraphic and radiometric age data question the Milankovitch characteristics of the Latemar cycles (Southern Alps, Italy). Geology 24:371–375CrossRefGoogle Scholar
  14. Brack P, Mundil R, Oberli F, Meier M, Rieber H (1997) Biostratigraphic and radiometric age data question the Milankovitch characteristics of the Latemar cycles (Southern Alps, Italy). Reply. Geology 25:471–472Google Scholar
  15. Brack P, Rieber H (1993) Towards a better definition of the Anisian/Ladinian boundary: New biostratigraphical data and correlations of boundary sections from the Southern Alps. Eclogae Geol Helv 86:415–527Google Scholar
  16. Brandner R (1991) Geological setting and stratigraphy of the Schlern-Rosengarten buildup and Seiser Alm basin. In: Brandner R, Flügel E, Koch R, Yose LA (eds) The northern margin of the Schlern/Sciliar Rosengarten/Catinaccio platform. Dolomieu Conference on Carbonate Platforms and Dolomitization, Guidebook Excursion A pp 4–16Google Scholar
  17. Brandner R, Flügel E, Senowbari-Daryan B (1991) Microfacies of carbonate slope boulders: indicator of the source area (Middle Triassic: Mahlknecht Cliff, Western Dolomites). Facies 25:279–296Google Scholar
  18. Castellarin A, Colacicchi R, Praturlon A (1978) Fasi distentive, trascorrenze e sovrascorrimenti lungo la Linea Ancona-Anzio, dal Lias medio al Pliocene. Geol Romana 17:161–189Google Scholar
  19. Coniglio M, Dix GR (1992) Carbonate slopes. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geol Assoc Canada, Geotext 1:349–373Google Scholar
  20. Crevello PD, Schlager W (1980) Carbonate debris sheets and turbidites, Exuma Sound, Bahamas. J Sediment Petrol 50:1121–1148Google Scholar
  21. Cuif JP (1974) Rôle des sclérosponges dans la faune récifale du Trias des Dolomites (Italie du Nord). Geobios 7:139–153Google Scholar
  22. De Zanche V, Farabegoli E (1988) Anisian paleogeographic evolution in the Central-Western Southern Alps. Mem Sci Geol 40:399–411Google Scholar
  23. De Zanche V, Gianolla P, Manfrin S, Mietto P, Roghi G (1995) A Middle Triassic back-stepping carbonate platform in the Dolomites (Italy): sequence stratigraphy and biochronostratigraphy. Mem Sci Geol 47:135–155Google Scholar
  24. Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (2000) Atlas Peri-Tethys, Palaeogeographical Maps. CCGM/CGMW, Paris, 24 maps and explanatory notes, 269 ppGoogle Scholar
  25. Doglioni C (1983) Duomo Medio-Triassico nelle Dolomiti. Rend Soc Geol Ital 6:13-16Google Scholar
  26. Doglioni C (1984) Triassic diapiric structures in the Central Dolomites. Eclogae Geol Helv 77:261–285Google Scholar
  27. Doglioni C (1987) Tectonics of the Dolomites. J Struct Geol 9:181–193CrossRefGoogle Scholar
  28. Egenhoff SO, Peterhänsel A, Bechstädt T, Zühlke R, Grötsch J (1999) Facies architecture of an isolated carbonate platform: tracing the cycles of the Latemar (Middle Triassic, Northern Italy). Sedimentology 46:893–912CrossRefGoogle Scholar
  29. Emmerich A (2001) Fazies und geometrische Entwicklung am Slope einer Mitteltriassischen Karbonatplattform: der Latemar (Dolomiten, Italien). Gaea heidelbergensis 9, CD-ROMGoogle Scholar
  30. Emmerich A, Zamparelli V, Zühlke R, Bechstädt T (2002) The reef of an Anisian (Middle Triassic) isolated carbonate platform: the Latemar (Dolomites, Italy). 16th Int Sediment Congr, Abstr, Rand Afrikaans Univ, Johannesburg, South Africa: 437–438Google Scholar
  31. Enos P, Jiayong W, Yangji Y (1997) Facies distribution and retreat of Middle Triassic platform margin, Guizhou province, south China. Sedimentology 44:563–584CrossRefGoogle Scholar
  32. Fagerstrom JA (1987) The evolution of reef communities. Wiley, New York, 600 ppGoogle Scholar
  33. Flügel E (1991) Environmental analysis of allochthonous carbonate blocks and autochthonous mounds at the northern margin of the Schlern-Rosengarten (Sciliar-Catinaccio) platform. In: Brandner R, Flügel E, Koch R, Yose LA (eds) The northern margin of the Schlern/Sciliar - Rosengarten/Catinaccio platform. Dolomieu Conference on Carbonate Platforms and Dolomitization, Guidebook Excursion A 41–55Google Scholar
  34. Flügel E (1994) Pangean shelf carbonates: Controls and paleoclimatic significance of Permian and Triassic reefs. In: Klein GD (ed) Pangea: paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. GSA Spec Pap 288:247–266Google Scholar
  35. Flügel E (2002) Triassic reef patterns. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Publ 72:391–463Google Scholar
  36. Flügel E, Stanley GD (1984) Reorganization, development and evolution of post-Permian reefs and reef organisms. Palaeontogr Am 54:177–186Google Scholar
  37. Fois E (1982) The Sass da Putia carbonate buildup (Western Dolomites): biofacies succession and margin development during the Ladinian. Riv Ital Paleontol Stratigr 87:565–598Google Scholar
  38. Fois E, Gaetani M (1984) The recovery of reef-building communities and the role of Cnidarians in carbonate sequences of the Middle Triassic (Anisian) in the Italian Dolomites. Palaeontogr Am 54:191–200Google Scholar
  39. Fürsich FT, Wendt J (1977) Biostratonomy and palaeoecology of the Cassian Formation (Triassic) of the Southern Alps. Palaeogeogr Palaeoclimatol Palaeoecol 22:257–323Google Scholar
  40. Gaetani M, Fois E, Jadoul F, Nicora A (1981) Nature and evolution of the Middle Triassic carbonate buildups in the Dolomites (Italy). Marine Geol 44:25–57CrossRefGoogle Scholar
  41. Goldhammer RK, Harris MT (1989) Eustatic controls on the stratigraphy and geometry of the Latemar buildup (Middle Triassic), the Dolomites of Northern Italy. In: Crevello PD, Wilson JJ, Sarg JF, Read JF (eds) Controls on carbonate platform and basin development. SEPM Spec Publ 44:323–338Google Scholar
  42. Hardie LA, Hinnov L (1997) Biostratigraphic and radiometric age data question the Milankovitch characteristics of the Latemar cycles (Southern Alps, Italy). Comment. Geology 25:470–471CrossRefGoogle Scholar
  43. Harris MT (1993) Reef fabrics, biotic crusts and syndepositional cements of the Latemar reef margin (Middle Triassic), Northern Italy. Sedimentology 40:383–401Google Scholar
  44. Harris MT (1994) The foreslope and toe-of-slope facies of the Middle Triassic Latemar buildup (Dolomites, Northern Italy). J Sediment Res B 64:132–145Google Scholar
  45. Henrich R, Zankl H (1986) Diagenesis of Upper Triassic Wetterstein reefs of the Bavarian Alps. In: Schroeder JH, Purser BH (eds) Reef diagenesis. Springer, Berlin Heidelberg New York: 245–268Google Scholar
  46. Hummel K (1928) Das Problem des Fazieswechsels in der Mitteltrias der Südtiroler Dolomiten. Geol Rundsch 19:223–228Google Scholar
  47. Iryu Y, Nakamori T, Matsuda S, Abe O (1995) Distribution of marine organisms and its geological significance in the modern reef complex of the Ryukyu Islands. Sediment Geol 99:243–258CrossRefGoogle Scholar
  48. Isintek ID, Altiner D, Koca U (2000) Middle Triassic foraminifera from the type section of the Laleköy Formation (Karaburun Peninsula, Western Turkey): remarks on Palaeolituonella meridionalis (Luperto, 1965). Rev Paléobiol 19:191–205Google Scholar
  49. James NP (1983) Reefs. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate Depositional Environments. Mem Am Assoc Petrol Geol 33:345–362Google Scholar
  50. James NP, Ginsburg RN (1979) Comparative anatomy, organism distribution and Late Quarternary evolution of modern reef margins. In: James NP, Ginsburg RN (eds) The seaward margin of Belize barrier and atoll reefs. IAS Spec Publ 3:153–171Google Scholar
  51. Kenter J (1990) Carbonate platform flanks; slope angle and sediment fabric. Sedimentology 37:777–794Google Scholar
  52. Knopp S (2002) Fazies und Geometrien am Plattform-/Beckenübergang einer Mitteltriassischen, isolierten Karbonatplattform: Der Latemar, SW-Dolomiten, Italien. Gaea heidelbergensis 10, CD-ROMGoogle Scholar
  53. Lehrmann D, Enos P, Montgomery P, Payne J, Orchard M, Bowring S, Ramezani J, Martin M, Jiayong W, HongMei W, YouYi Y, Jiafei X, Rongxi L (2002) Integrated biostratigraphy, magnetostratigraphy and geochronology of the Olenikian-Anisian boundary in marine strata of Guandao section, Nanpanjiang Basin, South China: implications for timing of biotic recovery from the end-Permian extinction. I.U.G.S. Subcomm Triassic Stratigr, STS/IGCP 467, Field Meeting, Veszprém, Hungary, 5-8 September, 2002:7-8Google Scholar
  54. Leonardi P (1967) Le Dolomiti: Geologia dei Monti tra Isarco e Piave. Manfrini, Rovereto, 1, 1019 ppGoogle Scholar
  55. Mallarino G (2002) Crisi delle piattaforme carbonatiche e dinamica deposizionale delle piattaforme pelagiche nel Giurassico della Sicilia occidentale. Unpubl. Ph.D. thesis, Univ Stud Napoli Palermo, Palermo, 201 ppGoogle Scholar
  56. Masetti M, Neri C (1980) L’Anisico della Val di Fassa (Dolomiti occidentali): sedimentologia e paleogeografia. Ann Univ Ferrara, NS, sez IX, 7, 1:1-19Google Scholar
  57. Maurer F (2000) Growth mode of middle Triassic carbonate platforms in the Western Dolomites (Southern Alps, Italy). Sediment Geol 134:275–286CrossRefGoogle Scholar
  58. McKinney ML (1985) Mass extinction patterns of marine invertebrate groups and some implications for a causal phenomenon. Paleobiology 11:227–233Google Scholar
  59. Mojsisovics E (1879) Die Dolomitriffe von Südtirol und Venetien: Beiträge zur Bildungsgeschichte der Alpen. Holder, Wien, 522 ppGoogle Scholar
  60. Mullins HT (1983) Modern carbonate slopes and basins of the Bahamas. In: Cook HE, Hine AC, Mullins HT (eds) Platform margin and deepwater carbonates. SEPM Short Course 12: 4.1–4.138Google Scholar
  61. Mullins HT, Cook HE (1986) Carbonate apron models: alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration. Sediment Geol 48:37–79CrossRefGoogle Scholar
  62. Mullins HT, Gardulski AF, Hine AC (1986) Catastrophic collapse of the west Florida carbonate platform margin. Geology 14:167–170CrossRefGoogle Scholar
  63. Mundil R, Brack P, Meier M, Rieber H, Oberli F (1996) High resolution U/Pb dating of Middle Triassic volcaniclastics: time-scale calibration and verification of tuning parameters for carbonate sedimentation. Earth Planet Sci Lett 141:137–151CrossRefGoogle Scholar
  64. Mundil R, Zühlke R, Bechstädt T, Brack P, Egenhoff SO, Meier M, Oberli F, Peterhänsel A, Rieber H (2003) Cyclicities in Triassic platform carbonates: synchronizing radio-isotopic and orbital clocks. Terra Nova 15:81–87CrossRefGoogle Scholar
  65. Mutti E, Ricci Lucchi F, Seguret M, Zanzucchi G (1984) Seismoturbidites: a new group of resedimented deposits. Marine Geol 55:103–116CrossRefGoogle Scholar
  66. Pia J (1937) Stratigraphie und Tektonik der Pragser Dolomiten in Südtirol. Pia, Wien, 248 ppGoogle Scholar
  67. Raup DM (1979) Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217–218Google Scholar
  68. Rettori R, Senowbari-Daryan B, Zühlke R (1996) Flatschkofelia anisica gen. et sp. nov. (Foraminiferida) from the Middle Triassic (Anisian) of Northern Dolomites, Italy. Riv Ital Paleontol Stratigr 102:413–416Google Scholar
  69. von Richthofen FF (1860) Geognostische Beschreibung der Umgegend von Predazzo, Sanct Cassian und Seiser Alpe in Süd-Tyrol. Perthes, Gotha, 327 ppGoogle Scholar
  70. Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, 21–51Google Scholar
  71. Rüffer T, Zamparelli V (1997) Facies and biota of Anisian to Carnian carbonate platforms in the Northern Calcareous Alps (Tyrol and Bavaria). Facies 37:115–136Google Scholar
  72. Rüffer T, Zühlke R (1995) Sequence stratigraphy and sea-level changes in the Early to Middle Triassic of the Alps: a global comparison. In: Haq BU (ed) Sequence stratigraphy and depositional response to eustatic, tectonic and climatic forcing. Kluwer, Amsterdam, pp 161–207Google Scholar
  73. Russo F, Mastandrea A, Neri C (1998) The Cipit boulders from the surroundings of the Sella massif. In: Perri MC, Spaletta C (eds) Southern Alps field trip guidebook. Ecos VII. Giorn Geol Spec Issue, 60:108–115Google Scholar
  74. Russo F, Mastandrea A, Stefani M, Neri C (2000) Carbonate facies dominated by syndepositional cements: a key component of Middle Triassic platforms. The Marmolada case history (Dolomites, Italy). Facies 42:211–226Google Scholar
  75. Sarti M, Winterer EL, Luciani V (2000) Repeated gravity-controlled fracturing and dilatation of Jurassic limestones over 130 m.y. and filling by episodic microturbidity currents of Cretaceous and Palaeogene sediments (Taormina, Sicily). Mem Soc Geol Ital 55:251–260Google Scholar
  76. Schäfer P, Senowbari-Daryan B (1982) The Upper Triassic Pantokrator limestone of Hydra (Greece): an example of a prograding reef complex. Facies 6:147–164Google Scholar
  77. Schäfer P, Senowbari-Daryan B (1983) Die Kalkalgen aus der Obertrias von Hydra, Griechenland. Palaeontographica, B 185:83–142Google Scholar
  78. Scheuber M (1990) Der Spitzkalk von Recoaro (Vicentinische Alpen, Norditalien): Sedimentologie, Paläontologie und Paläogeographie eines mitteltriassichen Ablagerungsraumes. Facies 23:57–96Google Scholar
  79. Seeling M, Emmerich A, Bechstädt T, Zühlke R (2005) Accommodation/sedimentation development and massive early marine cementation: Latemar vs. Concarena (Middle/Upper Triassic, Southern Alps). Sediment Geol DOI 10.1016/j.sedgeo.2004.09.004Google Scholar
  80. Scholz G (1972) An Anisian Wetterstein limestone reef in North Hungary. Acta Miner Petrogr Szeged 20:337–362Google Scholar
  81. Scoffin TP, Garrett P (1974) Processes in the formation and preservation of internal structure in Bermuda patch reefs. Proc 2nd Int Coral Reef Symp, Brisbane, 2:429–448Google Scholar
  82. Senowbari-Daryan B, Di Stefano P (2001) Middle Triassic dasycladales in Sicily: evidence of an Anisian?-Ladinian carbonate platform. Acta Geol Hung 44:95–109Google Scholar
  83. Senowbari-Daryan B, Zühlke R, Bechstädt T, Flügel E (1993) Anisian (Middle Triassic) buildups of the Northern Dolomites (Italy): the recovery of reef communities after the Permian/Triassic crisis. Facies 28:181–256Google Scholar
  84. Stefani MM, Mastandrea AG, Russo F (2001) Massive syndepositional cementation associated with organic matter: a key factor in the depositional dynamics of the Latemar and coeval Middle Triassic carbonate platforms of the Dolomites. In: Wortmann UG, Funk H (eds) 21st IAS Meet Sediment, Abstr Programme, Davos, Switzerland:111Google Scholar
  85. Trifonova E, Vaptsarova A (1982) Palaeoecology of Late Anisian foraminifera in part of North Bulgaria. Geol balkanica 12:95–104Google Scholar
  86. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, 496 ppGoogle Scholar
  87. Twitchett RJ (1999) Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 154:27–37Google Scholar
  88. Vachard D, Martini R, Rettori R, Zaninetti L (1994) Nouvelle classification des foraminifères. Endothyroides du Trias. Geobios 27:543–557Google Scholar
  89. Viel G (1979a) Litostratigrafia Ladinica: una revisione. Ricostruzione paleogeografica e paleostrutturale dell’area Dolomitico-Cadorina (Alpi Meridionali). I. Parte. Riv Ital Paleontol Stratigr 85:88–125Google Scholar
  90. Viel G (1979b) Litostratigrafia Ladinica: una revisione. Ricostruzione paleogeografica e paleostrutturale dell’area Dolomitico-Cadorina (Alpi Meridionali). II. Parte. Riv Ital Paleontol Stratigr 85:297–352Google Scholar
  91. Winterer EL, Metzler CV, Sarti M (1991) Neptunian dikes and associated breccias (Southern Alps and Switzerland): role of gravity sliding in open and closed systems. Sedimentology 38:381–404Google Scholar
  92. Wright VP (1992) A revised classification of limestones. Sediment Geol 76:177–185CrossRefGoogle Scholar
  93. Zacher W (1980) Biozonierung und Sediment-Zusammensetzung in einem phippinischen Saumriff bei Lobo, Batangas. Z dt Geol Ges 131:793–801Google Scholar
  94. Zamparelli V, Emmerich A, Bechstädt T, Zühlke R (2001) The reefal margin and slope of an isolated Mid-Triassic atoll: the Latemar, Dolomites, Italy. In: Wortmann UG, Funk H (eds) 21st IAS Meet Sediment, Abstr Programme, Davos, Switzerland:115Google Scholar
  95. Zaninetti L, Ciarapica G, Martini R, Salvini-Bonnard G, Rettori R (1987) Turriglomina scandonei, n.sp., dans les calcaires récifaux du Trias Moyen. Rev Paléobiol 6:177–182Google Scholar
  96. Zaninetti L, Ciarapica G, Martini R, Rettori R (1990) Paléoécologie des turriglomines (foraminifères) dans le Trias de l’Apennin méridional (bassin de Lagonegro, Italie). Arch Sci Genève 43:295–305Google Scholar
  97. Zaninetti L, Rettori R, Martini R, Cirilli S, Ciarapica G (1992) Il foraminifero Abriolina Luperto, 1963 (Trias medio, Appennino meridionale): ridescrizione, tassonomia, nuovi dati sulla destribuzione stratigrafica. Rev Paléobiol 11:197–204Google Scholar
  98. Zaninetti L, Rettori R, Martini R (1994) Aulotortus eotriasicus, n.sp., un nuovo foraminifero del Trias medio (Anisico) delle Dinaridi ed Ellenidi. Boll Soc Paleontol Ital 33:43–49Google Scholar
  99. Zorn H (1971) Paläontologische, stratigraphische und sedimentologische Untersuchungen des Salvatoredolomits (Mitteltrias) der Tessiner Kalkalgen. Schweiz paläont Abh 91:1–90Google Scholar
  100. Zorn H (1972) Mikrofazielle Analyse eines mitteltriadischen Riffkomplexes in den Tessiner Kalkalpen. Mitt Ges Geol Bergbaustud Österr 21:123–142Google Scholar
  101. Zühlke R (2000) Fazies, hochauflösende Sequenzstratigraphie und Beckenentwicklung im Anis (Mittlere Trias) der Dolomiten (Südalpin, Italien). Gaea heidelbergensis 6, CD-ROMGoogle Scholar
  102. Zühlke R, Bechstädt T, Brack P, Mundil R, Rieber H (2000) Die Latemar-Kontroverse: neue Daten zur Geometrie, zeitlichen Entwicklung und Interpretation lagunärer Zyklen. Mitt Ges Geol Bergbaustud Österr 43:154Google Scholar
  103. Zühlke R, Bechstädt T, Mundil R (2003) Sub-Milankovitch and Milankovitch forcing on a model Mesozoic carbonate platform - the Latemar (Middle Triassic, Italy). Terra Nova 15:69–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Axel Emmerich
    • 1
  • Valeria Zamparelli
    • 2
  • Thilo Bechstädt
    • 1
  • Rainer Zühlke
    • 1
  1. 1.Geologisch-Paläontologisches InstitutRuprecht-Karls-Universität HeidelbergHeidelbergGermany
  2. 2.Dipartimento di Scienze della TerraUniversità degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations