Skip to main content
Log in

Characteristics of peritidal facies and evidences for subaerial exposures in Dachstein-type cyclic platform carbonates in the Transdanubian Range, Hungary

  • Original Paper
  • Published:
Facies Aims and scope Submit manuscript

Abstract

In the Late Triassic, an extremely large carbonate platform system (Dachstein-type platforms) developed on the margin of the Neotethys. On the wide inner platform cyclic peritidal, lagoonal successions were deposited. In the Transdanubian Range (Hungary), the lower part of the 1.5–2-km-thick cyclic succession (Upper Tuvalian–mid-Norian) is pervasively dolomitised, the upper part (Upper Norian–Rhaetian) is non-dolomitised; there is a transitional interval between them made up of partially dolomitised cycles. The peritidal–lagoonal cycles are commonly bounded by well-developed disconformity surfaces reflecting subaerial erosion that punctuated the marine carbonate accumulation. Truncation of the cycles was preceded by pervasive cementation of the previously deposited cycle. In the early stage of the platform evolution, tidal flat dolomitisation under semi-arid conditions led to the consolidation of the previously deposited sediments. The truncation surfaces were commonly covered by dolocretes. During the more humid Late Norian–Rhaetian period, the early cementation was followed by karstification, accumulation of wind-blown dust and pedogenesis. Erosion during regularly recurring subaerial exposure that commonly reached the previously deposited subtidal beds suggests eustatic control of the cyclicity and supports the application of an allocyclic model, even if the Milankovitch signal is imperfect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9 A
Fig. 10
Fig. 11 A
Fig. 12 A
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Balog A, Haas J, Read JF, Coruh C (1997) Shallow marine record of orbitally forced cyclicity in a Late Triassic carbonate platform, Hungary. J Sediment Res 67(4):661–675

    Google Scholar 

  • Balog A, Read JF, Haas J (1999) Climate-controlled early dolomite, Late Triassic cyclic platform carbonates, Hungary. J Sediment Res 69(1):267282

    Google Scholar 

  • Benson RH (1959) Ecology of recent ostracodes of the Todos Santos Bay Region, Baja, California, Mexico. Univ Kansas Paleontol Contrib Arthropoda Art 1:1–80

    Google Scholar 

  • Bossellini A (1967) La tematica deposizionale della Dolomia Principale (Dolomiti e Prealpi Venete). Boll Soc Geol It 86:133–167

    Google Scholar 

  • Bosellini A, Hardie LA (1988) Facies e cicli della Dolomia Principale delle Alpi Venete. Mem Soc Geol It 30:245–266

    Google Scholar 

  • Choquette PW, James NP (1988) Introduction. In: Choquette PW, James NP (eds) Paleokarst. Springer, Berlin Heidelberg New York, pp 1–21

  • Cozzi A, Hinnov LA, Hardie LA (2003) Facies and cyclostratigraphy of Dachstein Limestone in the Julian Alps (N.E. Italy): new insights on the Lofer Cyclothem controversy. In: Abstracts of the field symposium on Triassic geochronology and cyclostratigraphy. September 2003, St. Christina, Italy, p 33

  • Dimitrijevic MN, Dimitrijevic MD (1982) Lofer-facia severnog Zlatibora. 10. Jubilarni Kongres geologa Jugoslavije, Zbornik radova 1:455–471

  • Dimitrijevic MN, Dimitrijevic MD (1991) Triassic carbonate platform of the Drina-Ivanica element (Dinarides). Acta Geol Hung 34(1–2):15–44

    Google Scholar 

  • Enos P, Samankassou E (1998) Lofer cyclothems revisited (late Triassic, Northern Alps, Austria). Facies 38:207–228

    Google Scholar 

  • Enos P, Samankassou E (2002) Lateral variations in Dachstein Limestone (Triassic, Austria). In: Abst. of the 16th Int. Sedimentological Congress. July 2002, Johannesburg, p 88

  • Esteban M (1991) Paleokarst: practical application. In: Wright VP, Smart P, Esteban M (eds) Paleokarst and paleokarst reservoirs. Occas, Univ Reading, Reading, pp 89–119

  • Fischer AG (1964) The Lofer cyclothems of the Alpine Triassic. Kansas Geol Surv Bull 169:107–149

    Google Scholar 

  • Fischer AG (1975) Tidal deposits, Dachstein Limestone of the North-Alpine Triassic. In: Ginsburg RN (ed) Tidal deposits: a casebook of recent examples and fossil counterparts. Springer, Berlin Heidelberg New York, pp 234–242

  • Fischer AG (1991) Orbital cyclicity in Mesozoic strata. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York, pp 48–62

  • Foos AM (1991) Aluminous lateritic soils, Eleuthera, Bahamas: a modern analog to carbonate paleosols. J Sediment Petrol 61:340–348

    CAS  Google Scholar 

  • Friedman GM, Amiel AJ, Braun M, Miller DS (1973) Generation of carbonate particles and laminites in algal mats: example from sea-marginal hypersaline pool, Gulf of Aquaba, Red Sea. Bull Am Assoc Petrol Geol 57:541–557

    Google Scholar 

  • Fruth I, Scherreiks R (1984) Hauptdolomit: sedimentary and paleogeographic models (Norian, Northern Calcareous Alps). Geol Rundsch 73:305–319

    Google Scholar 

  • Fülöp J (1976) The Mesozoic basement horst blocks of Tata. Geol Hung Ser Geol 16:1–122

    Google Scholar 

  • Gawlick H-J (2000) Paleogeographie der Ober-Trias Karbonatplattform in den Nördlichen Kalkalpen. Mitt Ges Geol Bergbaustud Österr 44:45–95

    Google Scholar 

  • Gawlick H-J, Krystin L, Lein R, Mandl GW (1999) Tectonostratigraphic concept for the Juvavic domain. Tübinger Geowiss Arbeiten A 52:95–99

    Google Scholar 

  • Gecse ÉT (1984) Cyclic Upper Triassic formations in the neighbourhood of Fenyőfő, Csesznek, Bakonyoszlop, Dudar and Sur (in Hungarian, English summary). Annual report, Hungarian Geol Inst, Budapest, pp 317–335

  • Ginsburg RN (1971) Landward movement of carbonate mud: new model for regressive cycles in carbonates (abs). Bull Am Assoc Petrol Geol 55:340–341

    Google Scholar 

  • Ginsburg RN, Hardie LA (1975) Tidal and storm deposits, northwestern Andros Island, Bahamas. In: Ginsburg RN (ed) Tidal deposits: a casebook of recent examples and fossil counterparts, vol 8. Springer, Berlin Heidelberg New York, pp 201–208

  • Goldhammer RK, Dunn PA, Hardie LA (1990) Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: examples from Alpine Triassic platform carbonates. Geol Soc Am Bull 102:535–562

    Article  Google Scholar 

  • Gradstein F, Ogg J (1996) A Phanerozoic time scale. Episodes 19:3–6

    Google Scholar 

  • Gümbel CW (1857) Untersuchungen in den Bayerischen Alpen zwischen der Iser und Salzach. Jb Geol R A 8:146–151

    Google Scholar 

  • Haas J (1982) Facies analysis of the cyclic Dachstein Limestone Formation (Upper Triassic) in the Bakony Mountains, Hungary. Facies 6:75–84

    Google Scholar 

  • Haas J (1991) A basic model for Lofer cycles. In: Einsele G, Ricken W Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York, pp 722–732

  • Haas J (1994) Lofer cycles of the Upper Triassic Dachstein platform in the Transdanubian Mid-Mountains (Hungary). Int. Assoc. Sedimentol., Spec Publ no. 19, pp 303–322

  • Haas J (1995a) Upper Triassic platform carbonates in the Northern Bakony Mts. (in Hungarian, English summary). Földt Közl 125:27–64

  • Haas J (1995b) Upper Triassic platform carbonates in the Northern Gerecse Mts. (in Hungarian, English summary). Földt Közl 125:259–293

  • Haas J (2002) Origin and evolution of Late Triassic platform carbonates in the Transdanubian Range (Hungary). Geol Carp 53:159—178

    Google Scholar 

  • Haas J, Balog A (1995) Facies characteristics of the Lofer cycles in the Upper Triassic platform carbonates of the Transdanubian Range, Hungary. Acta Geol Hung 38(1):1–36

    Google Scholar 

  • Haas J, Budai T (1995) Upper Permian-Triassic facies zones in the Transdanubian Range. Riv It Paleontol Stratigr 101:249–266

    Google Scholar 

  • Haas J, Demény A (2002) Early dolomitisation of Late Triassic platform carbonates in the Transdanubian Range (Hungary). Sediment Geol 150:225–242

    Article  Google Scholar 

  • Haas J, Kovács S, Krystyn L, Lein R (1995) Significance of Late Permian-Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain. Tectonophysics 242:19–40

    Article  Google Scholar 

  • Haas J, Skourtsis-Coroneou V (1995) The Upper Triassic platform sequences in the Transdanubian Range and the Pelagonian Zone s.l.: a correlation. Geol Soc Greece, Athens, Spec. Publ. no. 4, pp 195–200

  • Hardie LA, Shinn EA (1986) Carbonate depositional environments, modern and ancient, Tidal flats. Colorado School Mines Q 81:1–74

    Google Scholar 

  • Iannace A, Frisia S (1994) Changing dolomitisation styles from Norian to Rhaetian in the southern Tethys realm. In: Purser B, Tuckes M, Zenger D (eds) Dolomites. IAS, Blackwell, Oxford, Spec. Publ. no. 21,pp 55–74

  • Jadoul F, Berra F, Frisia S (1992) Stratigraphic and paleontologic evolution of a carbonate platform in an extensional tectonic regime: example of the Dolomia Principale in Lombardy (Italy). Rev It Paleontol Stratigr 91:479–511

    Google Scholar 

  • James NP (1972) Holocene and Pleistocene calcareous crusts (caliche) profiles: criteria for subaerial exposure. J Sediment Petrog 42:817–836

    CAS  Google Scholar 

  • Mandl GW (2000) The Alpine sector of the Tethyan shel: examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitt Österr Geol Ges 92:61–77

    Google Scholar 

  • Michalik J (1980) A paleoenvironmental and paleoecological analysis of the Western Carpathian part of the northern Tethyan nearshore region in the latest Triassic time. Riv It Paleontol Stratigr 85:1047–1064

    Google Scholar 

  • Michalik J (1993) Mesozoic tensional basins in the Alpine-Carpathian Shelf. Acta Geol Hung 36(4):395–403

    Google Scholar 

  • Mindszenty A, Deák J (1999) Carbonate paleosols from the Upper Triassic of the Gerecse mountains, Hungary (in Hungarian, English summary). Földt Közl 129(2):213–248

    Google Scholar 

  • Monty CL, Hardie LA (1976) The geological significance of freshwater blue-green algal calcareous marsh In: Walter MR (ed) Stomatolites. Elsevier, Amsterdam, pp 447–477

  • Ogorelec B, Buser S (1996) Dachstein Limestone from Krn in Julian Alps (Slovenia). Geologija 39:133–155

    Google Scholar 

  • Ogorelec B, Rothe P (1992): Mikrofacies, Diagenese und Geochemie des Dachsteinkalkes und Hauptdolomits in Süd-West-Slowenien. Geologija 35:81–18

    Google Scholar 

  • Oravecz J (1963) Questions stratigraphiques at facies des formations triasiques supérieures de la montagne Centrale de Transdanubie (in Hungarian, French summary). Föld Közl 93/2:63–67

    Google Scholar 

  • Oravecz-Scheffer A (1987) Triassic foraminifers of the Transdanubian Central Range. Geol Hung Ser Pal 50:1–331

    Google Scholar 

  • Peters KF (1855) Bericht über die geologische Aufnahme in Karnten. Jb Geol R A 6:508–580

    Google Scholar 

  • Pia J (1923) Geologische Skizze des Steinernes Meeres bei Saalfelden mit besonderer Rücksicht auf die Diploprengesteine. Sitz Ber Österr Akad Wiss Math Naturw 132:35–79

    Google Scholar 

  • Piller W (1976) Facies und Lithostratigraphie des gebankten Dachsteinkalkes (Obertrias) am Nordrand des Toten Gebirges (S Grünau/Almtal, Oberösterreich). Mitt Ges Geol Bergbaustud Öster 23:133–152

    Google Scholar 

  • Pomoni-Papaioannou F, Trifonova E, Tsaila-Monopolis S, Katsavrias N (1986) Lofer type cyclothems in a Late Triassic dolomitic sequence on the eastern part of the Olympus. Inst Geol Min Expor, Athens, pp 403–417

  • Read JF (1974) Calcrete deposits and Quarternary sediments, Edel Province, Western Australia. In: Logan BW, Read JF, Hagan GM, Hoffman P, Brown RG, Woods PJ, Gebelin CD (eds) Evolution and diagenesis of Quarternary carbonate sequences, Shark Bay, Western Australia. AAPG Mem 22:250–282

    Google Scholar 

  • Read JF, Horbury AD (1993) Eustatic and tectonic controls on porosity evolution beneath sequence-bounding unconformities and parasequence disconformities on carbonate platforms. In: Horbury AD, Robinson AG (eds) Diagenesis and basin development. AAPG Stud Geology 36:155–197

    Google Scholar 

  • Riding R (1991) Classification of microbial carbonates In: Calcareous algae and stromatolites Springer, Berlin Heidelberg New York, pp 21–51

    Google Scholar 

  • Sander B (1936) Beiträge zur Kenntnis der Anlagerungsgefüge. Miner Petr Mitt 48: 27–139

    CAS  Google Scholar 

  • Satterley AK (1996) The interpretation of cyclic succession of the Middle and Upper Triassic of the Northern and Southern Alps. Earth Sci Rev 40:181–207

    Article  Google Scholar 

  • Satterley AK, Brandner R (1995) The genesis of Lofer cycles of the Dachstein Limestone, Northern Calcareous Alps, Austria. Geol Rundsch 84:287–292

    Article  Google Scholar 

  • Schwarzacher W (1948) Über die sedimentäre Rhythmik des Dachsteinkalkes von Lofer. Geol B A Verh 10–12:175–18

  • Schwarzacher W (1954) Die Grossrhythmic des Dachsteinkalkes von Lofer. Tschermaks Min Petr Mitt 4:44–54

    Google Scholar 

  • Schwarzacher W (1975) Sedimentation models and quantitative stratigraphy. In: Developments of sedimentology, vol 19, Elsevier, New York, 382 pp

  • Schwarzacher W, Haas J (1986) Comparative statistical analysis of some Hungarian and Austrian Upper Triassic peritidal carbonate sequences. Acta Geol Hung 29:175–196

    Google Scholar 

  • Shinn EA (1983) Tidal flat environment. In: Sholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. Mem Amer Assoc Petrol Geol 33:173–210

    Google Scholar 

  • Shinn EA, Lidz B (1983) Blackened limestone pebbles: fire at subaerial unconformities. In: Jammes NP, Choquette PW (eds) Paleokarst. Springer, Berlin Heidelberg New York, pp 117–131

  • Simony F (1847) Winteraufenthalt im Hallstatter Schneegebirge und 3. Ersteigung der hohen Dachsteinspitze. Ber Mitt Freund Naturw 2:207–221

    Google Scholar 

  • Strasser A (1984) Black-pebble occurrence and genesis in Holocene carbonate sediments (Florida Keys, Bahamas, and Tunisia). J Sediment Petrol 54:1097–1109

    CAS  Google Scholar 

  • Strasser A (1991) Lagoonal-peritidal sequences in carbonate environments: autocyclic and allocyclic processes. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York, pp 709–721

  • Strasser A, Davaud E (1983) Black pebbles of the Purbeckian (Swiss and French Jura): lithology, geochemistry and origin. Ecol Geol Helv 76:551–580

    Google Scholar 

  • Tollmann A (1976) Analyse des klassischen nordalpinen Mesozoicums. Stratigraphie, Fauna und Facies der Nördlichen Kalkalpen. Deuticke, Wien 580 pp

  • Tollmann A (1985) Geologie von Österreich, Band 2. Deuticke, Wien 710 pp

  • Tucker ME (1990) Modern carbonate environments. In: Tucker ME, Wright VP (ed) Carbonate sedimentology. Blackwell, Oxford, pp 70–100

  • Végh-Neubrant E (1957) Sedimentpetrographische Eigenschaften karbonatischer Gesteine aus dem ungarischen Trias (in Hungarian, German summary). Földt Közl 87/1:19–25

  • Végh-Neubrant E (1960) Petrologische Untersuchung der Obertrias-Bildungen der Gerecsegebirges in Ungarn. Geol Hung Ser Geol 12:1–130

    Google Scholar 

  • Végh-Neubrant E (1982) Triasische Megalodontaceae: Entwicklung, Stratigraphie und Paleontologie. Akadémiai Kiadó, Budapest, 526 pp

    Google Scholar 

  • Vera JA, Jiménez de Cisneros C (1993): Palaeogeographic significance of black pebbles (Lower Cretaceous, Pre-Betic, southern Spain). Paleogeogr Paleoclimatol Paleoecol 102:89–102

    Article  Google Scholar 

  • Wright VP (1989) Terrestrial stromatolites: a review. Sediment Geol 65:1–13

    Article  Google Scholar 

  • Wright VP (1994) Paleosols in shallow marine carbonate sequences. Earth Sci Rev 35:367–395

    Article  Google Scholar 

  • Wright VP, Tucker ME (1991) Calcretes: an introduction. In: Wright VP, Tucker ME (eds) Calcretes. IAS Reprint Series, vol 2, Blackwell, Oxford, pp 1–22

  • Zankl H (1967) Die Karbonatsedimente der Obertrias in den nördlichen Kalkalpen. Geol Rundsch 56:128–139

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian Academy of Sciences and the Hungarian Scientific Research Fund (OTKA T037966). I am much obliged to Professor Paul Enos and Professor Werner Piller for their careful and constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, J. Characteristics of peritidal facies and evidences for subaerial exposures in Dachstein-type cyclic platform carbonates in the Transdanubian Range, Hungary. Facies 50, 263–286 (2004). https://doi.org/10.1007/s10347-004-0021-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-004-0021-x

Keywords

Navigation