Advertisement

Facies

, Volume 50, Issue 1, pp 35–60 | Cite as

Minor- and trace-element intra-shell variations in Santonian inoceramids (Basque-Cantabrian Basin, northern Spain): diagenetic and primary causes

  • Álvaro Jiménez-BerrocosoEmail author
  • Maria Cruz Zuluaga
  • Javier Elorza
Original Article

Abstract

Santonian deep- and platform-marine facies inoceramids from the Basque-Cantabrian Basin show clear ‘saw-toothed’ intra-shell variations with respect to Mg/Ca, Sr/Ca, Na/Ca, Ba/Ca, Fe/Ca and Mn/Ca ratios. Under cathodoluminescence, the most luminescent zones in all the inoceramids present lower Mg/Ca and Sr/Ca (up to 48% and 35% lower values, respectively) and higher Fe/Ca and Mn/Ca ratios (up to 362% and 819% higher values, respectively), which is indicative of diagenetic modification. In contrast, the least luminescent zones show higher Mg/Ca and Sr/Ca ratios and lower Fe/Ca and Mn/Ca. These findings, along with the presence of frequent, well-correlated Mg/Ca, Sr/Ca and Na/Ca ratios, inversely related to Fe/Ca and Mn/Ca, in the weakest luminescent zones suggest major retention of the primary intra-shell variations in these zones. Moreover, Ba/Ca profiles, not connected with the general cathodoluminescence behaviour of the shells, also point towards partial retention of the primary patterns. The ‘saw-toothed’ intra-shell variations are thought to be caused by the distinct geochemical signals acquired originally by the inoceramid alternating clear and dark growth lines. The deposition of the growth lines and thus the ‘saw-toothed’ intra-shell variations may be mainly related to periodically changing palaeoenvironmental conditions, such as seawater temperature variations and phytodetritus rainfall. This interpretation is supported by the appearance of highly similar chemical ‘saw-toothed’ variations in the extant shallow-marine Atrina rigida shell.

Keywords

Inoceramid shells Cathodoluminescence Diagenesis Chemical intra-shell variations Alternating growth lines Santonian Basque-Cantabrian Basin 

Notes

Acknowledgements

This contribution, as part of the Ph.D. Thesis of A. Jiménez-Berrocoso, was funded by the project 9/UPV 00130.310–14596/2002 of the University of the Basque-Country (Spain). We gratefully thank Kenneth G. MacLeod (University of Missouri-Columbia, USA) for providing the modern specimen of Atrina rigida (nº 12559) and Christine Laurin for the linguistic assistance. Constructive comments by Dr. T. Steuber (Bochum University, Germany) and an anonymous reviewer on an early draft of the manuscript are gratefully acknowledged.

References

  1. Al-Aasm IS, Veizer J (1982) Chemical stabilization of low-Mg calcite: an example of brachiopods. J Sediment Petrol 52:1101–1109Google Scholar
  2. Al-Aasm IS, Veizer J (1986) Diagenetic stabilization of aragonite and low-Mg calcite, I. Trace elements in rudists. J Sediment Petrol 56:138–152Google Scholar
  3. Brand U, Morrison JO (1987) Biogeochemistry of fossil marine invertebrates. Geosci Can 14:85–107Google Scholar
  4. Brand U, Veizer J (1980) Chemical diagenesis of a multicomponent carbonate system, 1: trace elements. J Sediment Petrol 50:1219–1236Google Scholar
  5. Bruhn F, Bruckschen P (1999) “Low limit of Mn2+-activated cathodoluminescence in calcite: state of the art”—discussion. Sediment Petrol 123:147–148CrossRefGoogle Scholar
  6. Burton EA, Walter LM (1991) The effects of P CO2 and temperature on magnesium incorporation in calcite in seawater and MgCl2-CaCl2 solutions. Geochim Cosmochim Acta 55:777–785CrossRefGoogle Scholar
  7. Busenberg E, Plummer LNL (1985) Kinetic and thermodynamic factors controlling the distribution of SO4 -2 and Na+ in selected aragonites. Geochim Cosmochim Acta 49:713–723Google Scholar
  8. Carpenter SJ, Lohmann K (1992) Sr/Mg of modern marine calcite: empirical indicators of ocean chemistry and precipitation rate. Geochim Cosmochim Acta 56:1837–1849CrossRefGoogle Scholar
  9. Clark II GR (1999) Organic matrix taphonomy in some molluscan shell microstructures. Palaeogeogr Palaeoclimatol Palaeoecol 149:305–312CrossRefGoogle Scholar
  10. Crame JA, Luther A (1997) The last inoceramid bivalves in Antarctica. Cretaceous Res 18:179–185CrossRefGoogle Scholar
  11. Dickson JAD (1965) A modified staining technique for carbonate in thin sections. Nature 205:587Google Scholar
  12. Dodd JR, Crisp EL (1982) Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for palaeosalinity studies. Palaeogeogr Palaeoclimatol Palaeoecol 38:45–56CrossRefGoogle Scholar
  13. Eisma D, Mook WG, Das HA (1976) Shell characteristics, isotopic composition and trace-element contents of some euryhaline molluscs as indicators of salinity. Palaeogeogr Palaeoclimatol Palaeoecol 19:39–62CrossRefGoogle Scholar
  14. Elorza J, Gacía-Garmilla F, Jagt JWM (1997) Diagenesis-related differences in isotopic and elemental composition of late Campanian and early Maastrichtian inoceramids and belemnites from Belgium: palaeoenvironmental implications. Geol Mijnbouw 75:349–360Google Scholar
  15. Elorza J, García-Garmilla F (1996) Petrological and geochemical evidence for diagenesis of inoceramid bivalve shells in the Plentzia Formation (Upper Cretaceous, Basque-Cantabrian Region, northern Spain). Cretaceous Res 17:479–503CrossRefGoogle Scholar
  16. Elorza J, García-Garmilla F (1998) Palaeoenvironmental implications and diagenesis of inoceramid shells (Bivalvia) in the mid-Maastrichtiense beds of the Sopelana, Zumaya and Bidart sections (coast of the Bay of Biscay, Basque Country). Palaeogeogr Palaeoclimatol Palaeoecol 141:303–328CrossRefGoogle Scholar
  17. Elorza J, Gómez-Alday JJ, Olivero EB (2001) Environmental stress and diagenesis modifications in inoceramids and belemnites from the Upper Cretaceous James Ross Island, Antarctica. Facies 44:227–242Google Scholar
  18. Fairchild IJ (1983) Chemical controls of cathodoluminescence of natural dolomites and calcites: new data and review. Sedimentology 30:579–583Google Scholar
  19. Floquet M (1991) La Plata-forme Nord-Castillane au Crétacé Superieur (Espagne). Arriére-pays ibérique de la marge passive basco-cantábrique. Sédimentation et Vie. Mémories Géologiques Université de Dijon 14, 925 ppGoogle Scholar
  20. Floquet M, Alonso A, Meléndez A (1982) El Cretácico Superior en la Meseta Norcastellana. In: El Cretácico de España (without eds) Universidad Complutense (Madrid), pp 387–453Google Scholar
  21. Frank JR, Carpenter AD, Oglesby TW (1982) Cathodoluminescence and composition of calcite cement in the Taum Sauk Limestone (Upper Cambrian), Southeast Missouri. J Sediment Petrol 52:631–638Google Scholar
  22. García-Mondéjar J, Pujalte V (1982) El Cretácico Superior de la franja costera de Cantabria. In: El Cretácico de España: (without eds) Universidad Complutense (Madrid), pp 84–88Google Scholar
  23. Gómez-Alday JJ, Elorza J (2003) Diagenesis, regular growth and records of seasonality in inoceramid bivalve shells from mid-Maastrichtian hemipelagic beds of the Bay of Biscay. Nethl J Geosci/Geol Mijnbouw 82:289–301Google Scholar
  24. González-Casado JM, Jiménez-Berrocoso A, García-Cuevas C, Elorza J (2003) Strain determinations using inoceramid shells as strain markers: a comparison of the calcite strain gauge technique and the Fry method. J Struct Geol 25:1773–1778CrossRefGoogle Scholar
  25. Grossman EL, Mii HS, Zhang C, Yancey TE (1996) Chemical variation in Pennsylvanian brachiopod shells—diagenetic, taxonomic, microstructural, and seasonal effects. J Sediment Res 66:1011–1022Google Scholar
  26. Habermann D, Neuser RD, Richter DK (1998) Low limit of Mn2+-activated cathodoluminescence of calcite: state of the art. Sediment Petrol 116:13–24CrossRefGoogle Scholar
  27. Habermann D, Neuser RD, Richter DK (1999) “Low limit of Mn2+-activated cathodoluminescence of calcite: state of the art”—reply. Sediment Petrol 123:149–151CrossRefGoogle Scholar
  28. Hendry JP, Perkins WT, Bane T (2001) Short-term environmental change in Jurassic lagoon deduced from geochemical trends in aragonite bivalve shells. Geol Soc Am Bull 113:790–798CrossRefGoogle Scholar
  29. Henoc J, Tong M (1978) Automatisation de la microsonde. Journal de Microscopie Spectroscopie Electrononique 3:247–254Google Scholar
  30. Ishikawa M, Ichikuni M (1984) Uptake of sodium and potassium by calcite. Chem Geol 42:137–146CrossRefGoogle Scholar
  31. Jiménez-Berrocoso A, Pascual A, Elorza J (2001) Señales geoquímicas y micropaleontológicas como marcadores de eventos paleoceanográficos en el Santoniense del Arco Vasco. Geogaceta 30:155–158Google Scholar
  32. Jiménez-Berrocoso A, Zuluaga MC, Elorza J (2002) Los pares caliza-marga de la Isla de Castro (Coniaciense final-Santoniense inferior, Cuenca Vasco-Cantábrica): variaciones isotópicas (δ18O y δ13C) y mineralógicas. Geogaceta 32:267–270Google Scholar
  33. Jiménez-Berrocoso A, Zuluaga MC, Elorza J (2003) Clay mineral assemblage and stable isotopes in four Santonian sections of the Basque-Cantabrian Basin (northern Spain): tecto-sedimentary influences. In: 10th Conference of European Clay Groups Association (EuroClay 2003), Abstract book, Modena (Italy) 140 ppGoogle Scholar
  34. Jones DS, Quitmayer IR (1996) Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios 11:340–346Google Scholar
  35. Kennish MJ (1980) Shell microgrowth analysis: Mercenaria mercenaria as a type example for research in population dynamics. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 253–292Google Scholar
  36. Klein RT, Lohmann KC, Kennedy GL (1997) Elemental and isotopic proxies of paleotemperature and palaeosalinity: climate reconstruction of the marginal northeast Pacific ca. 80 ka. Geology 25:363–366CrossRefGoogle Scholar
  37. Klein RT, Lohmann KC, Tayer CW (1996a) Bivalve skeleton record sea-surface temperature and δ18O via Mg/Ca and 18O/16O ratios. Geology 24:415–418CrossRefGoogle Scholar
  38. Klein RT, Lohmann KC, Tayer CW (1996b) Sr/Ca and 13C/12C ratios in skeletal calcite of Mytilus trossulus: covariation with metabolic rate, salinity, and carbon isotope composition of seawater. Geochim Cosmochim Acta 60:4207–4221Google Scholar
  39. Leng M, Pearce NJG (1999) Seasonal variation of trace element and isotopic composition in the shell of a coastal mollusc, Mactra isabelleana. J Shellfish Res 18:569–574Google Scholar
  40. López G (1992) Paleontología y bioestratigrafía de los inocerámidos (Bivalvia) del Cretácico Superior de la Cuenca Navarro-Cántabra y de la Plataforma Norcastellana. Parte IV: estudio sistemático del subgénero Cordiceramus Seitz y Bioestratigrafía. Boletín Geológico y Minero 103:837–892Google Scholar
  41. López G, Martínez R, Lamolda MA (1992) Biogeographic relationships of the Coniacian and Santonian inoceramid bivalves of northern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 92:249–261CrossRefGoogle Scholar
  42. Lorens RB (1981) Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim Cosmochim Acta 45:553–561Google Scholar
  43. Lorens RB, Bender ML (1980) The impacts of solution chemistry on Mytilus edulis calcite and aragonite. Geochim Cosmochim Acta 44:1265–1278CrossRefGoogle Scholar
  44. Lowenstam HA (1961) Mineralogy, O18/O16 ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans. J Geol 69:241–260Google Scholar
  45. Machel HG (1985) Cathodoluminescence in calcite and dolomite and its chemical interpretation. Geosci Can 12:139–147Google Scholar
  46. Machel HG (2000) Application of cathodoluminescence to carbonate diagenesis. In: Pagel MG, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geoscience. Springer, Berlin Heidelberg New York, pp 271–301Google Scholar
  47. MacLeod KG, Huber BT (1996) Reorganization of deep ocean circulation accompanying a Late Cretaceous extinction event. Nature 380:422–425CrossRefGoogle Scholar
  48. MacLeod KG, Huber BT, Le Ducharme M (2000) Paleontological and geochemical constraints on changes in the deep ocean during the Cretaceous greenhouse interval. In: Huber BT, MacLeod KG, Wing H (eds) Warm climates in Earth history. Cambridge University Press, Cambridge, pp 241–274Google Scholar
  49. Mann KO (1992) Physical, environmental, and mineralogical controls on Mg and Sr concentration in Nautilus. J Paleontol 66:620–636Google Scholar
  50. Mason RA (1987) Ion microprobe analysis of trace elements in calcite with and application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, U.K. Chem Geol 64:209–224CrossRefGoogle Scholar
  51. Mathey B (1982) El Cretácico Superior del Arco Vasco. In: El Cretácico de España (without eds) Universidad Complutense, Madrid, pp 111–136Google Scholar
  52. Mii HS, Grossman EL (1994) Late Pennsylvanian seasonality reflected in the δ18O and elemental composition of a brachiopod shell. Geology 22:661–664CrossRefGoogle Scholar
  53. Morrison JO, Brand U (1986) Geochemistry of recent marine invertebrates. Geosci Can 13:237–354Google Scholar
  54. Morrison JO, Brand U (1988) An evaluation of diagenesis and chemostratigraphy of Upper Cretaceous molluscs from the Canadian Interior Seaway. Chem Geol 72:235–248Google Scholar
  55. Morse JW, Bender ML (1990) Partitioning coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems. Chem Geol 82:265–277CrossRefGoogle Scholar
  56. Opperman K (1996) Das Santon und Untercampan von Soto de la Marina (Kantabrien, Nordspanien): Sedimentologie, Stratigraphie und Faziesentwicklung. Berlin. Unpublished Diploma-Thesis, 93 ppGoogle Scholar
  57. Pascual A, Jiménez-Berrocoso A (2003) Datos paleoceanográficos aportados por los foraminíferos de la sección de Barrika (Santoniense del Arco Vasco). Geogaceta 34:63–66Google Scholar
  58. Pingitore NE (1982) The role of diffusion during carbonate diagenesis. J Sediment Petrol 52:27–39Google Scholar
  59. Pirrie D, Marshall JD (1990a) Diagenesis of Inoceramus and Late Cretaceous paleoenvironmental geochemistry: a case study from James Ross Island, Antarctica. Palaios 5:336–345Google Scholar
  60. Pirrie D, Marshall JD (1990b) High paleolatitude Late Cretaceous paleotemperatures: new data from James Ross Island, Antarctica. Geology 18:31–34CrossRefGoogle Scholar
  61. Purton LMA, Shields GA, Brasier MD, Grime GW (1999) Metabolism controls Sr/Ca ratios in fossil aragonitic mollusk. Geology 12:1083–1086CrossRefGoogle Scholar
  62. Savard MM, Veizer J, Hinton R (1995) Cathodoluminescence at low Fe and Mn concentrations: a SIMS study of zones in natural calcites. J Sediment Res A65:208–213Google Scholar
  63. Stecher HA, Krantz DE, Lord CJ, Luther GW, Bock KW (1996) Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochim Cosmochim Acta 60:3445–3456CrossRefGoogle Scholar
  64. Steuber T (1999) Isotopic and chemical intra-shell variations in low-Mg calcite of rudist bivalves (Mollusca-Hippuritacea): disequilibrium fractionations and late Cretaceous seasonality. Int J Earth Sci 88:551–570CrossRefGoogle Scholar
  65. Vander Putten E, Dehairs F, André L, Baeyens W (2000) High-resolution distribution of trace elements in calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochim Cosmochim Acta 64:997–1011CrossRefGoogle Scholar
  66. Veizer J (1983) Chemical diagenesis of carbonates: theory and application of trace element techniques. In: Arthur MA, Anderson TF, Kaplan IR, Veizer J, Land L (eds) Stable isotopes in sedimentary geology. SEPM Short Course 10:3-1–3-100Google Scholar
  67. Whittaker SG, Kyser TK, Caldwell WGE (1987) Paleoenvironmental geochemistry of the Claggett marine cyclothem in south-central Saskatchewan. Can J Earth Sci 24:967–984Google Scholar
  68. Wiese F, Wilmsen, M (1999) Sequence stratigraphy in the Cenomanian to Campanian of the North Cantabrian Basin (Cantabrian, N-Spain). Neues Jahrb Geol Paläomtol Abh 212:131–173Google Scholar
  69. Wilmsen M, Wiese F, Ernst G (1996) Facies development, events and sedimentary sequences in the Albian to Maastrichtian of the Santander depositional area, northern Spain. Mitt Geol-Paläontol Inst 77:337–367Google Scholar
  70. Woo KS, Anderson TF, Sandberg PA (1993) Diagenesis of skeletal and non-skeletal components of Mid-Cretaceous limestones. J Sediment Petrol 63:18–32Google Scholar
  71. Wright EK (1987) Stratification and paleocirculation of the Late Cretaceous Western Interior Seaway of North America. Geol Soc Am Bull 99:480–490Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Álvaro Jiménez-Berrocoso
    • 1
    Email author
  • Maria Cruz Zuluaga
    • 1
  • Javier Elorza
    • 1
  1. 1.Dept. Mineralogía y Petrología.Universidad del País VascoBilbaoSpain

Personalised recommendations