, Volume 49, Issue 1, pp 271–297 | Cite as

Patterns and changes of reef-coral communities at the Sanganeb-Atoll (Sudan, central Red Sea): 1980 to 1991

  • Götz B. Reinicke
  • Dieter K. Kroll
  • Helmut Schuhmacher


Benthic coral reef communities were investigated on the Sanganeb-Atoll, 28 km off the coast of Port Sudan (Sudan, central Red Sea). Four test areas (5×5 m) were selected and marked in approx. 10 m depth along a transect running in SSW-NNE direction over the atoll and were mapped in 1980 and 1991. Detailed photographs were used for in situ verification of taxonomic composition of communities (comprising some 135 cnidarian species) and transferred to scale 1∶10 maps, used for the quantitative analyses of coral communities in the test areas. Shares of inanimate (unoccupied) substrate were 42–60% of the total test areas in 1991 (i.e. slightly larger than at the 1980 census). The living cover was mainly composed of scleractinian and alcyonacean species. Coral communities were analysed on the species level with regard to taxonomic composition, areal coverage, biophysiographic zonation, and changes in community structures during the investigation period of 11 years. The analyses revealed a general constancy in the overall composition and distribution of benthic taxa which reflect the different abiotic conditions along the transect across the leeward and windward sides of the atoll. However, the detailed view on species recruitment, growth, decrease and disappearance on the base of a decadal time span allows to detect life history traints of stony and soft corals and their significance for the dynamics of the respective communities. Especially soft corals (predominating in the two leeward test quadrats) exhibit various strategies to colonize and occupy space. Their presence, however, is hardly to be detected from the fossil record (except for spiculite of some Sinularia spp.). Exemplarity, single colonies' fates were reconstructed and extrapolated. Based on the data of species recruitment and disappearance a time estimate for development and turnover of reef communities is provided. Species turnover rates were calculated as approx. 15 species/10 years (Trel=2.63%/year) with estimated median community turnover periods of 416 (323–755) years from recruitment rates, or 338 (219–526) years from clearing rates.

Data reference: This study is based on extensive datasets compiled in five appendices (referred to as “App.” in the text) which can be viewed and/or downloaded from the internet site at:


Coral reefs Longterm community dynamics Hermatypic corals Soft corals Species turnover Area turnover Life history traits Recruitment Persistence Disturbance Hydrodynamic Gradient Red sea Recent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achituv, Y. and Benayahu, Y. (1990): Rolyp dimorphism and functional, sequential hermaphroditism in the soft coral Heteroxenia fuscescens (Octocorallis).—Mar. Ecol. Prog. Ser., 64, 263–269.Google Scholar
  2. Alderslade, P. (2000): Four new genera of soft corals (Coelenterata: Octocorallia), with notes on the classification of some established taxa.—Zool. Med. Leiden, 74, 237–249.Google Scholar
  3. — (2001): Six new genera and six new species of soft coral, and some proposed familial and subfamilial changes within the Alcyonacea (Coelenterata: Octocorallia).—Bull. Biol. Soc. Wash., 10, 15–65.Google Scholar
  4. Aronson, R.B., Macintyre, I.G., Precht, W.F., Murdoch, T.J.T., and Wapnick, Ch.M. (2002): The expanding scale of species turnover events on coral reefs in Belize.—Ecol. Monogr., 72, 233–249.Google Scholar
  5. Benayahu, Y. and Loya, Y., (1984): Substratum preferences and planulae settling of two Red Sea alcyonaceans: Xenia macrospiculata Gohar, and Parerythropodium fulvum fulvum (Forskal)—J. Exp. Mar. Biol. Ecol., 83, 249–261.CrossRefGoogle Scholar
  6. —— (1985): Settlement and recruitment of a soft coral: Why is Xenia macrospiculata a successful colonizer?—Bull. Mar. Sci., 36, 177–188.Google Scholar
  7. —— (1987): Long-term recruitment of soft-corals (Octocorallia: Alcyonacea) on artificial substrata at Eilat (Red Sea).—Mar. Ecol. Prog. Ser., 38, 161–167.Google Scholar
  8. Bohnsack, J.A. (1979): Photographic quantitative sampling of hard-bottom benthic communities.—Bull. Mar. Sci., 29, 242–252.Google Scholar
  9. Brachert, T.C. and Dullo, W.-Ch. (1991): Laminar micrite crusts and associated foreslope processes, Red Sea.—J. Sedim. Petrol., 61, 354–363.Google Scholar
  10. Buddemeier, R.W., (1994): Symbiosis, calcification, and environmental interactions.—Bulletin del'Institut oceanographique, Monaco, no special, 13, 119–131.Google Scholar
  11. Connell, J.H. (1973): Population ecology of reef-building corals. —In: Jones O.A. and Endean R. (eds.): Biology and Geology of Coral Reefs.—2, 217–245, London (Academic Press).Google Scholar
  12. Connell, J.H., Hughes, T.P. and Wallace, C.C. (1997): A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time.—Ecol. Monogr., 67, 461–488.CrossRefGoogle Scholar
  13. Dahan, M. and Benayahu, Y. (1997): Clonal propagation by the azooxanthellate octocoral Dendronephthya hemprichi.—Coral Reefs, 16, 5–12.CrossRefGoogle Scholar
  14. Done, T.J. (1992): Constancy and Change in some Great Barrier Reef Coral Communities: 1980–1990.—Am. Zool., 32, 655–662.Google Scholar
  15. — (1999): Coral community adaptability to environmental change at the scales of regions, reefs and reef zones.—Am. Zool., 39, 66–79.Google Scholar
  16. Dubinsky, Z. and Stambler, N. (1996): Marine pollution and coral reefs.—Global Change Biology, 2, 511–526.CrossRefGoogle Scholar
  17. Dustan, P. and Halas, J.C. (1987): Changes in the reef-coral community of Carysfort Reef, Key Largo, Florida: 1974 to 1982.—Coral Reefs, 6, 91–106.CrossRefGoogle Scholar
  18. Endean, R. and Cameron, A.M. (1990): Trends and new perspectives in coral-reef ecology.—In: Dubinsky, Z. (ed.): Coral Reefs.—469–492. Amsterdam (Elsevier).Google Scholar
  19. Fabricius, K.E. (1995): Slow population turnover in the soft-coral genera Sinularia and Sarcophyton in mid- and outershelf reefs of the Great Barrier Reef.—Mar. Ecol. Prog. Ser., 126, 145–152.Google Scholar
  20. Gleason, M.G. (1993): Effects of disturbance on coral communities: bleaching in Moorea, French Polynesia.—Coral Reefs, 12, 193–201.CrossRefGoogle Scholar
  21. Guilcher, A. (1988): A heretofore neglected type of coral reef: The ridge reef. Morphology and origin.—Proc. 6th Int. Coral Reef Symp, Townsville, 3, 399–402.Google Scholar
  22. Guzman, H.M., Jackson, J.B.C. and Weil, E. (1991): Short-term ecological consequences of a major oil spill on Panamanian subtidal reef corals.—Coral Reefs 10, 1–12.CrossRefGoogle Scholar
  23. Handbuch für das Rote Meer und den Persischen Golf, (1988). Nr 2034, 7. Aufl.—493 pp., Deutsches Hydrographisches Institut (Hamburg).Google Scholar
  24. Hartshorn, G.S. (1978): Tree fall and tropical forest dynamics.— In: Tomlinson, P.B. and Zimmermann, M.H. (eds). Tropical Trees as Living Systems—617–638, London (Cambridge University Press).Google Scholar
  25. Heiss, A.G. (1994): Coral Reefs in the Red Sea: Growth, production and stable isotopes.—GEOMAR Report No. 32, 1–137.Google Scholar
  26. Highsmith, R.C., (1992): Reproduction by fragmentation in, corals. —Mar. Ecol. Prog. Ser., 7, 207–226.Google Scholar
  27. Hopley, D. (1997): Coral reefs and climate change.—WWF Climate Change Cmapaign, Report, Washington, 46 pp.Google Scholar
  28. Hughes, T.P. (1994): Catastrophes, Phase Shifts, and Large-Scale Degradation of a Caribbean Coral Reef.—Science, 265, 1547–1551.CrossRefGoogle Scholar
  29. Jokiel, P.L., Hunter, C.L., Taguchi, L. and Watarai, L. (1993): Ecological impact of a freshwater “reef-kill” in Kaneohe Bay, Oahu, Hawaii.—Coral Reefs, 12, 177–184.CrossRefGoogle Scholar
  30. Karlson, R.H. (1999): Dynamics of coral communities.—250 pp., Dordrecht (Kluwer)Google Scholar
  31. Karlson, R.H. and Hurd, L.E., (1993): Disturbance, coral reef communities and changing ecological paradigms.—Coral Reefs, 12, 117–125.CrossRefGoogle Scholar
  32. Klunzinger, C.B. (1879): Die Korallthiere des Rothen Meeres. 2: Die Steinkorallen. 1. Die Madreporaceen und Oculinaceen.— 88 pp., Berlin (Gutmann)Google Scholar
  33. Loch, K., Loch, W., Schuhmacher, H. and See, W.R. (2002): Coral recruitment and regeneration on a Maldivian reef 21 months after the coral bleaching event, of 1998.—Mar. Ecol., 23, 219–236.CrossRefGoogle Scholar
  34. Massel, S.R. and Done, T.J. (1993): Effects of cyclone waves on masive coral assemblages on the Great Barrier Reef: meteorology, hydrodynamics and demography.—Coral Reefs, 12, 153–166.CrossRefGoogle Scholar
  35. McClanahan, T.R., Muthiga, N.A. (1998): An ecological shift in a remote coral atoll of Belize over 25 years.—Envir. Conserv., 22, 122–130.CrossRefGoogle Scholar
  36. McConnaughey, T.A., Whelan, J.F. (1997): Calcification generates protons for nutrient and bicarbonate uptake.—Elsevier Science B.V., Earth-Science Reviews, 42, 95–117.CrossRefGoogle Scholar
  37. Mergner, H. and Schuhmacher, H. (1981): Quantitative Analyse der Korallenbesiedlung eines Vorriffareals bei Aqaba (Rotes Meer).—Helgoländer Meeresunters., 34, 337–354.CrossRefGoogle Scholar
  38. —— (1985): Quantitative Analyse von Korallengemeinschaften des Sanganeb-Atolls (mittleres Rotes Meer)—I. Die Besiedlungsstruktur hydrodynamisch unterschiedlich exponierter Außen- und Innenriffe.—Helgoländer Meeresunters., 39, 375–417.CrossRefGoogle Scholar
  39. Mergner, H., Schuhmacher, H. and Kroll, D. (1994): Longterm changes in the coral community of a fore reef area at Aqaba (Red Sea): 1976–1989.—Proc. 7th Int. Coral Reef Symp., Guam, 1, 104–113.Google Scholar
  40. Pichon, M. (1978): Problems of measuring and mapping coral colonies.—In: Stoddart, D.R. and Johannes, R.E. (eds.), Coral reefs: research methods.—219–230, Paris (UNESCO).Google Scholar
  41. Porter, J.W., Woodley, J.D., Smith, G.J., Neigel, J.E., Battey, J.F., and Dallmeyer, D.G. (1981): Population trends among Jamaican reef corals.—Nature, 294, 249–250.CrossRefGoogle Scholar
  42. Porter, J.W., Meier, O.W. (1992). Quantification of Loss and Change in Floridian Reef Coral Populations.—Amer. Zool., 32, 625–640.Google Scholar
  43. Reinicke, G.B. (1995): Beiträge zur Systematik und Ökologie der Xeniidae (Octocorallia, Alcyonacea) des Roten Meeres. Essener Ökologische Schriften, 6, 192 pp., Magdeburg (Westarp Wissenschaften)Google Scholar
  44. — (1997): Xeniidae (Coelenterata: Octocorallia) of the Red Sea, with descriptions of six new species of Xenia.—Fauna of Saudi Arabia, 16, 5–62.Google Scholar
  45. Reinicke, G.B. and Schuhmacher, H. (1996): Significance of different trrits of soft coral assemblages (Octocorallia, Alcyoniina) in benthic reef communities of the Red Sea.— Göttinger Arb. Geol. Paläont., Sb2, 77–84.Google Scholar
  46. Richmond, R.H. (1987): Energetics, competency, and long-distance dispersal of planula larvae of the coral Pillopora damicornis.—Mar. Biol., 93, 527–533.CrossRefGoogle Scholar
  47. Riegl, B., Velimirov, B. (1994): The structure of coral communities at Hurghada in the northern Red Sea.—Mar. Ecol., 15, 213–231.Google Scholar
  48. Rogers, C.S. (1993): Hurricanes on coral reefs: the intermediate disturbance hypothesis revisited.—Coral Reefs, 12, 127–137.CrossRefGoogle Scholar
  49. Rosen, B.R. (1981): The tropical high diversity enigma—the corals' eye view.—In: Forey, P.L. (ed.): Chance, Change and Challenge—The evolving biosphere.—103–129, Cambridge (University Press).Google Scholar
  50. Scheer, G. (1978): Application of phytosociologic methods.—In: Stoddard, D.R. and Johannes, R.E. (eds.): Coral reefs: research methods.—175–196, Paris (UNESCO).Google Scholar
  51. Scheer, G. and Pillai, C.S.G. (1983): Report on the stony corals from the Red Sea.—Zoologica, Stuttgart, 133, 1–198.Google Scholar
  52. Schoener, T.W. (1983): Rate of species turnover decreases from lower to higher organisms: a review of the data.—Oikos, 41, 372–377.CrossRefGoogle Scholar
  53. Schuhmacher, H. (1974): On the conditions accompanying the first settlement of corals on artificial reefs with special reference to the influence of grazing sea urchins (Eilat, Red Sea).—Proc. 2nd Int. Symp. coral Reefs, Australia 1973, 1, 257–267.Google Scholar
  54. — (1989): Development of coral communities on artificial reef types over 20 years (Eilat, Red Sea).—Proc. 6th Int. Coral Reef Symp., Townsville 1988, 3, 379–384.Google Scholar
  55. — (1997): Soft corals as reef builders.—Proc. 8th Int. Coral Reef Symp., Panama 1996, 1, 499–502.Google Scholar
  56. Schuhmacher, H., Kiene, W. and Dullo, W.-Ch. (1995): Factors controlling Holocene reef growth: an interdisciplinary approach. —Facies, 32, 145–188.CrossRefGoogle Scholar
  57. Schuhmacher, H. and Mergner, H. (1985): Quantitative Analyse von Korallengemeinschaften des Sanganeb-Atolls (mittleres Rotes Meer).—II. Vergleich mit einem Riffareal bei Aqaba (nördliches Rotes Meer) am Nordrande des indopazifischen Riffgürtels.—Helgoländer Meeresunters., 39, 419–440.CrossRefGoogle Scholar
  58. Sheppard, C.R.C. (1985): Unoccupied substrate in the central Great Barrier Reef: role of coral interactions.—Mar. Ecol. Prog. Ser., 25: 259–268.Google Scholar
  59. Sheppard, C.R.C. and Sheppard, A.L.S. (1991): Corals and coral communities of Arabia.—Fauna of Saudi Arabia, 12, 1–170.Google Scholar
  60. Sheppard, C.R.C., Price, A. and Roberts, C. (1992): Marine ecology of the Arabian region.—359 pp. London (Academic Press).Google Scholar
  61. Smith, T.J. (1992): Forest structure.—In: Robertson, A.I., and Alongi, D.M. (eds.): Coastal and estruarine studies. Tropical mangrove ecosystems.—101–136, Washington D.C. (American Geophysical Union).Google Scholar
  62. Stoddart, D.R. (1969): Ecology and morphology of recent coral reefs.—Biol. Rev., 44, 433–498.Google Scholar
  63. Van Treeck, P., Schuhmacher, H. and Paster, M. (1996): Grazing and bioerosion by herbivorous fishes—key processes structuring coral reef communities.—In: Reitner, J., Neuweiler, F. and Gunkel, F. (eds.): Global and regional controls on biogenic sedimentation.—I. Reef Evolution. Research Reports. —Göttinger Arb. Geol. Paläont., Sb2, 133–137.Google Scholar
  64. Veron, J.E.N. (2000): Corals of the world, 3 Volumes.—Townsville, Australian Institute of Marine Science.Google Scholar
  65. Weinberg, S. (1981). A comparison of coral reef survey methods. —Bijdr Dierk., 51, 199–218.Google Scholar

Copyright information

© Institut für Palaentologie, Universitat Erlangen 2003

Authors and Affiliations

  • Götz B. Reinicke
    • 1
  • Dieter K. Kroll
    • 2
  • Helmut Schuhmacher
    • 2
  1. 1.German Oceanographic MuseumStralsund
  2. 2.Institute of Ecology, Dept. of HydrobiologyUniversity of EssenEssen

Personalised recommendations