Skip to main content

Advertisement

Log in

Microbial boundstone dominated carbonate slope (Upper Carboniferous, N Spain): Microfacies, lithofacies distribution and stratal geometry

  • Published:
Facies Aims and scope Submit manuscript

Summary

The Carboniferous, particularly during the Serpukhovian and Bashkirian time, was a period of scarce shallow-water calcimicrobial-microbialite reef growth. Organic frameworks developed on high-rising platforms are, however, recorded in the Precaspian Basin subsurface, Kazakhstan, Russia, Japan and Spain and represent uncommon occurrences within the general trend of low accumulation rates and scarcity of shallow-water reefs. Sierra del Cuera (Cantabrian Mountains, N Spain) is a well-exposed high-rising carbonate platform of Late Carboniferous (Bashkirian-Moscovian) age with a microbial boundstone-dominated slope dipping from 20° up to 45°. Kilometer-scale continuous exposures allow the detailed documentation of slope geometry and lithofacies spatial distribution. This study aims to develop a depositional model of steep-margined Late Paleozoic platforms built by microbial carbonates and to contribute to the understanding of the controlling factors on lithofacies characteristics, stacking patterns, accumulation rates and evolution of the depositional architecture of systems, which differ from light-dependent coralgal platform margins.

From the platform break to depths of nearly 300 m, the slope is dominated by massive cement-rich boundstone, which accumulated through the biologically induced precipitation of micrite. Boundstone facies (type A) with peloidal carbonate mud, fenestellid and fistuliporid bryozoans, sponge-like molds and primary cavities filled by radiaxial fibrous cement occurs all over the slope but dominates the deeper settings. Type B boundstone consists of globose centimeter-scale laminated accretionary structures, which commonly host botryoidal cement in growth cavities. The laminae nucleate around fenestellid bryozoans, sponges, Renalcis and Girvanella-like filaments. Type B boundstone typically occurs at depths between 20–150 m to locally more than 300 m and forms the bulk of the Bashkirian prograding slope. The uppermost slope boundstone (type C; between 0 and 20–100 m depth) includes peloidal micrite, radiaxial fibrous cement, bryozoans, sponge molds, Donezella, Renalcis, Girvanella, Ortonella, calcareous algae and calcitornellid foraminifers.

From depths of 80–200 m to 450 m, 1–30 m thick lenses of crinoidal packstone, spiculitic wackestone, and bryozoan biocementstone with red-stained micrite matrix are episodically intercalated with boundstone and breccias. These layers increase in number from the uppermost Bashkirian to the Moscovian in parallel with the change from a rapidly prograding to an aggrading architecture. The red-stained strata share comparable features with Lower Carboniferous deeper-water mud-mound facies and were deposited during relative rises of sea level and pauses in boundstone production. Rapid relative sea-level rises might have been associated with changes in oceanographic conditions not favourable for thecalcimicrobial boundstone growth, such as upwelling of colder, nutrient-rich waters lifting the thermocline to depths of 80–200 m.

Downslope of 150–300 m, boundstones interfinger with layers of matrix-free breccias, lenses of matrix-rich breccias, platform- and slope-derived grainstone and crinoidal packstone. Clast-supported breccias bound by radiaxial cement are produced by rock falls and avalanches coeval to boundstone growth. Matrix-rich breccias are debris flow deposits triggered by the accumulation of red-stained layers. Debris flows develop following the relative sea-level rises, which favour the deposition of micrite-rich lithofacies on the slope rather than being related to relative sea-level falls and subaerial exposures. The steep slope angles are the result of in situ growth and rapid stabilization by marine cement in the uppermost part, passing into a detrital talus, which rests at the angle of repose of noncohesive material. In the Moscovian, the aggradational architecture and steeper clinoforms are the result of increased accommodation space due to tectonic subsidence and due to a reduction of slope accumulation rates (from 240±45−605±35 m/My to 130±5 m/My). The increasing number of red-stained layers and the decrease of boundstone productivity are attributed to environmental changes in the adjacent basin, in particular during relative rises of sea level and to possible cooling due to icehouse conditions. The geometry of the depositional system appears to be controlled by boundstone growth rates. During the Bashkirian, the boundstone growth potential is at least 10 times greater than average values for ancient carbonate systems. The slope progradation rates (nearly 400–1000 m/My) are similar to the highest values deduced for the Holocene Bahamian prograding platform margin. The fundamental differences with modern systems are that progradation of the microbial-boundstone dominated steep slope is primarily controlled by boundstone growth rates rather than by highstand shedding from the platform top and that boundstone growth is largely independent from light and controlled by the physicochemical characteristics of seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, E.W. and Schlager, W. (2000): Basic types of submarine slope curvature.—J. Sed. Res., 70/4, 814–828, Tulsa

    Google Scholar 

  • Ahr, W.M. (1989): Sedimentary and tectonic controls on the development of en early Mississippian carbonate ramp. Sacramento Mountains area, New Mexico.—In: P.D. Crevello, J.L. Wilson, J.F. Sarg and J.F. Read (eds.): Controls on carbonate platforms and basin development.—SEPM Spec. Publs. 44, 203–212, Tulsa.

  • Antoshkina, A. I. (1998): Organic buildups and reefs on the Palaeozoic carbonate platform margin, Pechora Urals, Russia. —Sed. Geol., 118, 187–211, Amsterdam

    Article  Google Scholar 

  • Arp, G., Reimer, A. and Reitner, J. (2001): Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans.—Science, 292, 1701–1704, Stanford

    Article  Google Scholar 

  • Bahamonde, J.R., Colmenero, J.R. and Vera, C. (1997): Growth and demise of Late Carboniferous carbonate platforms in the eastern Cantabrian Zone, Asturias, northwestern Spain.—Sed. Geol., 110, 99–122, Amsterdam

    Article  Google Scholar 

  • Bahamonde, J.R., Vera, C. and Colmenero, J.R. (2000): A steep-fronted Carboniferous carbonate platform: clinoformal geometry and lithofacies (Picos de Europa, NW Spain).—Sedimentology, 47, 645–664, Oxford

    Article  Google Scholar 

  • Bebout, D.G. and Kerans, C. (1993): Guide to the Permian Reef Geology Trail, McKittrick Canyon, Guadalupe Mountains National Park, West Texas, Bureau of Economic Geology, University of Texas, Guidebook 26, 46 p., Austin

  • Blendinger, W. (2001): Triassic carbonate buildup flanks in the Dolomites, northern Italy: breccias, boulder fabric and the importance of early diagenesis.—Sedimentology, 49, 919–933, Oxford

    Article  Google Scholar 

  • Bosscher, H. and Schlager, W. (1992): Computer simulation of reef growth.—Sedimentology, 39, 503–512, Oxford

    Article  Google Scholar 

  • Boulvain, F. (2001): Facies architecture and diagenesis of Belgian Late Frasnian carbonate mounds.—Sed. Geol., 145, 269–294, Amsterdam

    Article  Google Scholar 

  • Boulvain, E., De Ridder, C., Mamet, B., Préat A. and Gillan, D. (2001): Iron microbial communities in Belgian Frasnian carbonate mounds.—Facies, 44, 47–60, Erlangen

    Google Scholar 

  • Bourque, P.-A. (1997): Part XVI: Paleozoic finely crystalline carbonate mounds: cryptic communities, petrogenesis and ecological zonation.—In: F., Neuweiler, J. Reitner, and C. Monty (eds): Biosedimentology of Microbial Buildups. IGCP Project No. 380. Proceedings of 2nd meetings. Göttingen/Germany 1996.—Facies, 36, 250–253, Erlangen

  • Bourque, P.-A. and Boulvain, F. (1993): A model for the origin and petrogenesis of the red stromatactis limestone of Paleozoic carbonate mounds.—J. Sed. Petrol., 63/4, 607–619, Tulsa

    Google Scholar 

  • Bruckschen, P., Oesmann, S. and Veizer, J. (1999): Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics.—Chem. Geol., 161, 127–163, Amsterdam

    Article  Google Scholar 

  • Bridges, P.H., Gutteridge, P. and Pickard, N.A.H. (1995): The environmental setting of Early Carboniferous mud-mounds.—In: Monty, C.L.V., Bosence, D.W.J., Bridges, P.H. and Pratt, B.R. (eds.): Carbonate Mud-Mounds: their Origin and Evolution.—Spec. Publs. Int. Ass. Sediment., 23, 171–190, Oxford

  • Brunton, F.R. and Dixon, O.A. (1994): Siliceous sponge-microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors.—Palaios, 9, 370–387, Tulsa

    Article  Google Scholar 

  • Burne, R.V. and Moore, L.S. (1987). Microbialites: organosedimentary deposits of benthic microbial communities.—Palaios, 2, 241–254, Tulsa

    Article  Google Scholar 

  • Burton, E.A. and Walter, L.M. (1987): Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control?.—Geology. 15, 111–114, Boulder

    Article  Google Scholar 

  • Camoin, G.F., Gautret, P., Montaggioni, L.F. and Cabioch, G. (1999): Nature and environmental significance of microbialites in Quaternary reefs: the Tahiti paradox.—Sed. Geol., 126, 271–304, Amsterdam

    Article  Google Scholar 

  • Castanier, S., Le Metayer-Levrel, G. and Perthuisot, J.-P. (1999): Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view.—Sed. Geol., 126, 9–23, Amsterdam

    Article  Google Scholar 

  • Castanier, S., Le Metayer-Level, G. and Perthuisot, J.-P. (2000): Bacterial roles in the precipitation of carbonate minerals.—In: Riding, R.E. and Awramik, S.M. (eds.): Microbial Sediments.—32–39. Berlin Heidelberg, (Springer)

    Google Scholar 

  • Chafetz, H.S. (1986): Marine peloids: a product of bacterially induced precipitation of calcite.—J. Sed. Petrol., 56/6, 812–817, Tulsa

    Google Scholar 

  • Chafetz, H.S. and Buczynski, C. (1992): Bacterially induced lithification of microbial mats.—Palaios, 7, 277–293. Tulsa

    Article  Google Scholar 

  • Colmenero, J.R., Agueda, J.A., Bahamonde, J.R., Barha, F.J., Barba, P., Fernández, L.P. and Salvador., C.I. (1993): Evolución de la cuenca de antepaís namuriense y westfaliense de la Zona Cantábrica, NW de España.—XII Int. Con. Carboniferous-Permian, Comptes Rendus, 2, 175–190, Buenos Aires

    Google Scholar 

  • Coniglio, M. and Dix, G.R. (1992). Carbonate slopes.—In: Walker, R.G. and James, N.P. (eds.): Facies models: response to sea level change.—Geol. Ass. Canada, 349–374, Ontario

    Google Scholar 

  • Cook, H.E., Zhemchuzhnizov, V.G., Buvtyshkin, V.M., Golub, L.Y., Gatovsky, Y.A. and Zorin, A.Y. (1994): Devonian and Carboniferous passive-margin carbonate platform of Southern Kazakhstan: summary of depositional and stratigraphic models to assist in the exploration and production of coeval giant carbonate platform oil and gas fields in the North Caspian Basin, Western Kazakhstan.—In: Embry, A.F., Beauchamp, B. and Glass, D.J. (eds.): Pangea: Global Environments and Resources.—Can. Soc. Petrol. Geol., Mem., 17, 363–381, Calgary

  • Davies, G.R. and Nassichuk, W.W. (1990): Submarine cements and fabrics in Carboniferous to lower Permian, reefal, shelf margin and slope carbonates, Northwestern Ellesmere Island, Canadian Arctic Archipelago.—Geol. Sur. Can. Bull., 399, 1–77, Calgary

    Google Scholar 

  • Davies, G.R., Nassichuk, W.W. and Beauchamp, B. (1989) Upper Carboniferous “Waulsortian” Reefs, Canadian Arctic Archipelago. In: Geldsetzer, H.H.J., James, N.P. and Tebbutt, G.E. (eds.): Reefs, Canada and Adjacent Area.—Can. Soc. Petrol. Geol., Memoir 13, 658–666, Calgary

  • Défarge, C., Trichet, J., Jaunet, A.-M., Robert, M., Tribble, J. and Sansone, F.J. (1996): Texture of microbial sediments revealed by cryo-scanning electron microscopy.—J. Sed. Res., 66, 935–947, Tulsa

    Google Scholar 

  • Della Porta, G., Kenter, J.A.M., and Bahamonde, J.R. (2002a): Microfacies and paleoenvironemnt of Donezella accumulations across an Upper Carboniferous high-rising carbonate platform (Asturias, NW Spain).—Facies, 46, 159–168, Erlangen

    Google Scholar 

  • Della Porta, G., Kenter, J.A.M., Immenhauser A. and Bahamonde, J.R. (2002b): Lithofacies character and architecture across a Pennsylvanian inner-platform transect (Sierra de Cuera, Asturias, Spain).—J. Sed. Res., 72/6, 898–916, Tulsa

    Google Scholar 

  • Devuyst, F.-X. and Lees, A. (2001): The initiation of Waulsortian buildups in Western Ireland.—Sedimentology, 48, 1121–1148, Oxford

    Article  Google Scholar 

  • Drzewiecki, P.A. and Simó, J.A. (2002): Depositional processes, triggering mechanisms and sediment composition of carbonate gravity flow deposits: examples from the Late Cretaceous of the south-central Pyrenees, Spain.—Sed. Geol., 146, 155–189. Amsterdam

    Article  Google Scholar 

  • Dupraz, C. and Strasser, A. (1999): Microbialites and microencrusters in shallow coral bioherms (middle to late Oxfordian, Swiss Jura Mountains).—Facies, 40, 101–130, Erlangen

    Article  Google Scholar 

  • Eberli, G. and Ginsburg, R.N. (1989): Cenozoic progradation of northwestero Great Bahama Bank, a record of lateral platform growth and sea-level fluctuations.—In: Crevello, P.D. Wilson. J.L., Sarg, J.F. and Read, J.F. (eds.): Controls on carbonate platforms and basin development.—SEPM Spec. Publ 44, 339–351, Tulsa

  • Eichmüller, K. and Seibert, P. (1984): Faziesentwicklung wischen Tournai und Westfal D in Kantabrischen Gebirge (NW-Spanien).—Zeitsch. Deut. Geol. Gesel., 135, 163–191. Hannover

    Google Scholar 

  • Enos, P. and Moore, C.H. (1983): Fore-reef slope environment.—In: Scholle, P.A., Bebout, D.G. and Moore, C.H. (eds.): Carbonate depositional environments.—AAPG, Mem., 33, 508–537, Tulsa

  • Flügel, E. and Kiessling, W.(2002): A new look at ancient reef. —In: W. Kiessling, E. Flügel and J. Golonka (eds): Phanerozoic reef patterns.—SEPM Spec. Publ. 72, 3–10. Tulsa

  • Folk, R.L. and Chafetz, H.S. (2000): Bacterially induced microscale and nanoscale carbonate precipitates.—In: Riding, R.E. and Awramik, S.M. (eds.): Microbial Sediments.—40–49, Berlin, Heidelberg (Springer)

    Google Scholar 

  • Golonka, J. and Kiessling, W. (2002): Phanerozoic time scale and definition of time slices. In: Kiessling, W., Flügel, E. and Golonka, J. (eds.): Phanerozoic reef patterns.—SEPM Spec. Publ. 72, pp. 11–20, Tulsa

  • Gradstein, F.M. and Ogg, J.G. (1996): Geological time scale for the Phancrozoic.—Episodes, 19, 3–4.

    Google Scholar 

  • Grotzinger, J.P. and James, N.P. (2000): Precambrian carbonates: evolution of understanding.—In: Grotzinger, J.P. and James, N.P. (eds.): Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World.—SEPM Spec. Publ. 67, 3–20, Tulsa

  • Hallock, P. and Schlager, W. (1986): Nutrient excess and the demise of coral reefs and carbonate platforms.—Palaios, 1, 389–398, Tulsa

    Article  Google Scholar 

  • Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G. and Smith, D.G. (1990): A Geologic Time Scale 1989.— Cambridge University Press, 263 p., Cambridge

    Google Scholar 

  • Harris, M.T. (1994). The foreslope and toe-of-slope facies of the Middle Triassic Latemar Buildup (Dolomites, northern Italy). —J. Sed. Res., B64/2, 132–145, Tulsa

    Google Scholar 

  • Immenhauser, A., Kenter, J.A.M., Ganssen, G., Bahamonde, J.R., Van Vliet, A. and Saher, M. (2002). Origin and significance of isotope shifts in Pennsylvanian carbonates (Asturias, NW Spain).—J. Sed. Res., 72/1, 82–94, Tulsa

    Google Scholar 

  • James, N.P. and Ginsburg, R.N. (1979): The seaward margin of Belize barrier and atoll reefs.—Int. Ass. Sed., 191 pp., Oxford

    Google Scholar 

  • Julivert, M. (1971): Décollement tectonics in the Hercynian cordillera of northwest Spain.—Amer. J. Sci., 270, 1–29, New Haven

    Article  Google Scholar 

  • Keim, L., Brandner, R., Krystyn, L. and Mette, W. (2001): Termination of carbonate slope progradation: an example from the Carnian of the Dolomites, Northern Italy.—Sed. Geol., 143, 303–323, Amsterdam

    Article  Google Scholar 

  • Keim, L. and Schlager, W. (1999): Automicrite facies on steep slopes (Triassic, Dolomites, Italy).—Facies, 41, 15–26 2 Pls., 4 Figs., Erlangen

    Article  Google Scholar 

  • Keim, L. and Schlager, W. (2001): Quantitative compositional analysis of a Triassic carbonate platform (Southern Alps, Italy).—Sed. Geol., 139, 261–283. Amsterdam

    Article  Google Scholar 

  • Kempe, S. and Kazmierczak, J. (1994): The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes.—Bull. Inst. Ocean. Monaco, Num. Spec. 13, 64–117, Monaco

    Google Scholar 

  • Kenter, J.A.M. (1990): Carbonate platform flanks: slope angle and sediment fabric.—Sedimentology, 37, 777–794, Oxford

    Article  Google Scholar 

  • Kenter, J.A.M. and Harris, P.M. (2002): Prograding steep and high-relief carbonate platform margins.—AAPG Ann. Conv., Prog. Vol. 11, A92, Houston

    Google Scholar 

  • Kenter, J.A.M., Hoeflaken, F., Bahamonde, J.R., Bracco Gartner, G.L., Keim, L., and Besems, R.E. (2003): Anatomy and litho-facies of an intact and seismic-scale Carboniferous carbonate platform (Asturias, NW Spain): analogues of hydrocarbon reservoirs in the Pricaspian basin (Kazakhstan).—In: Zempolicy, W. and Cook, H. (eds.): Paleozoic Carbonates of the Commonwealth of Independents States (CIS): Subsurface Reservoirs and Outcrop Analogs.—SEPM, Spec. Publ. 74, 185–207, Tulsa

  • Kiessling, W. (2001): Paleoclimatic significance of Phanerozoic reefs.—Geology, 29/8, 751–754, Boulder

    Article  Google Scholar 

  • Kirkland, B.L., Dickson, J.A.D., Wood, R.A. and Land, L.S. (1998). Microbilite and microstratigraphy: the origin of encrustations in the middle and upper Capitan Formation, Guadalupe Mountains, Texas and New Mexico, U.S.A.—J. Sed. Res., 68, 956–969, Tulsa

    Google Scholar 

  • Kleypas, J.A., Buddemeier, R.W., Archer, D., Gattuso, J.-P., Langdon, C. and Opdyke, B.N. (1999). Geochemical consequences of increased atmospheric carbon dioxide on coral reefs.—Science, 284, 118–120.

    Article  Google Scholar 

  • Knorre, H.V. and Krumbein, W.E. (2000): Bacterial calcification. —In: Riding, R.E. and Awramik, S.M. (eds.): Microbial Sediments. —23–31, Berlin Heidelberg, (Springer)

    Google Scholar 

  • Lees, A. and Miller, J. (1995): Waulsortian banks.—In: Monty, C.L.V., Bosence, D.W.J., Bridges, P.H. and Pratt, B.R. (eds.): Carbonate Mud-Mounds: their Origin and Evolution. —Spec. Publs. Int. Ass. Sediment. 23, 191–271, Oxford.

  • Lowenstam, H.A. (1981). Minerals formed by organisms.— Science, 211, 1126–1131.

    Article  Google Scholar 

  • Macintyre, I.G., Reid, R.P. and Steneck, R.S. (1996): Growth history of stromatolites in a Holocene fringing reef, Stocking Island, Bahamas.—J. Sed. Res., 66/1, 231–242, Tulsa

    Google Scholar 

  • Madi, A., Bourque, P.-A. and Mamet, B.L. (1996): Depth-related ecological zonation of a Carboniferous carbonate ramp: Upper Viséan of Béchar Basin, Western Algeria.—Facies, 35, 59–80, 5 Pls., 9 Figs., Erlangen.

    Article  Google Scholar 

  • Marquínez, J. (1978): Estudio geológico del sector suroriental de Picos de Europa (Cordillera Cantábrica, NW de España).— Trab. Geol., Univ. Oviedo 10, 295–315, Madrid

    Google Scholar 

  • Mazzullo, S.J. (1980): Calcite pseudospar replacive of marine acicular aragonite, and implication for aragonite cement diagenesis. —J. Sed. Petrol., 50/2, 409–422, Tulsa

    Google Scholar 

  • McNeill, D.F., Eberli, G.P., Lidz, B.H., Swart, P.K. and Kenter, J.A.M. (2001): Chronostratigraphy of a prograded carbonate platform margin: a record of dynamic slope sedimentation, western Great Bahama Bank.—In: Ginsburg, R. (ed.): Subsurface Geology of a Prograding Carbonate Platform Margin, Great Bahama Bank: Results of the Bahamas Drilling Project. —SEPM Spec. Publ. 70, 101–134, Tulsa.

  • Melim, L.A. and Scholle, P.A. (1995): The forereef facies of the Permian Capitan Formation: the role of sediment supply versus sea-level changes.—J. Sed. Res., B65/1, 107–118, Tulsa

    Google Scholar 

  • Menning, M., Weyer, D., Drozdzewski, G., van Ameron, H.W.J. and Wendt, I. (2000): A Carboniferous Time Scale 2000: discussion and use parameters as time indicators from Central and Western Europe.—Geol. Jahrb., A 156, 3–44

    Google Scholar 

  • Merz-Preiß, M. (2000): Calcification in cyanobacteria.—In: Riding, R.E. and Awramik, S.M. (eds.): Microbial Sediments.—50–56, Berlin Heidelberg, (Springer)

    Google Scholar 

  • Mli, H.-S., Grossman, E.L. and Yancey, T.E. (1999): Carboniferous isotope stratigraphies of North America: implications for Carboniferous paleoceanography and Mississippian glaciation. —Bull. Geol. Soc. Am., 111/7, 960–973, Boulder

    Article  Google Scholar 

  • Montaggioni I.G. and Camoin, G.F. (1993): Stromatolites associated with coralgal communities in Holocene high-energy reefs. —Geology, 21, 149–152, Boulder

    Article  Google Scholar 

  • Monty, C.L.V. (1995): The rise and nature of carbonate mudmounds: an introductory actualistic approach.—In: Monty, C.L.V., Bosence, D.W.J., Bridges, P.H. & Pratt, B.R. (eds.): Carbonate Mud-Mounds: their Origin and Evolution.—Spec. Publs. Int. Ass. Sediment., 23, 11–48, Oxford

  • Mundy, D.J.C. (1994): Microbialite-sponge-bryozoan-coral framestones in Lower Carboniferous (late Viséan) buildups of northern England (UK.—In: Embry, A.F., Beauchamp, B. ync Glass, D.J. (eds.): Pangea: Global Environments and Resources Can. Soc. Petrol. Geol., Mem., 17, 713–729, Calgary

  • Nakazawa, T. (2001): Carboniferous reef succession of the Panthalassan open-ocean setting: Example from Omi Limestone, Central Japan.—Facies, 44, 183–210, Erlangen

    Google Scholar 

  • Navarro, D., Leyva, F. and Villa, E. (1986): Cambios laterales de facies en el Carbonifero del oriente de Asturias (Cordillera Cantábrica. Norte de España).—Trab. Geol., Univ. Oviedo, 16, 87–102. Oviedo

    Google Scholar 

  • Neuweiler, F., Gautret, P., Thiel, V., Langes, R., Michaelis, W. and Reitner, J. (1999): Petrology of Lower Cretaceous carbonate mud mounds (Albian, N. Spain): insights into orgamomineralic deposits of the geological record.—Sedimentology, 46/5, 837–859, Oxford

    Article  Google Scholar 

  • Neuweiler, F., Rutsch, M., Geipel, G., Reimer, A. and Heise, K.-H. (2000). Soluble humic substances from in situ precipitated microcrystalline calcium carbonate, internal sediment, and spar cement in a Cretaceous carbonate mud-mound.—Geology, 28/9, 851–854, Boulder

    Article  Google Scholar 

  • Pentecost, A. and Riding, R. (1986): Calcification of cyanobacteria. —In: Leadbeater, B.S.C. and Riding, R. (eds.): Biomineralization in Lower Plants and Animals.—Syst. Ass., Spec. Vol. 30, 73–90.

  • Pickard, N.A.H. (1992): Depositional controls on Lower Carboniferous microbial buildups, eastern Midland, Valley of Scotland. —Sedimentology, 39, 1081–1100.

    Article  Google Scholar 

  • Pickard, N.A.H. (1996): Evidence for microbial influence on the development of Lower Carboniferous buildups.—In: Strogen, P., Somerville, I.D. and Jones, G.L. (eds.): Recent Advances in Lower Carboniferous Geology.—Geol. Soc., Spec. Publ. 107, 65–82, London

  • Playford, P.E., Hurley, N.F., Kerans, C. and Middleton, M. (1989): Reefal platform development, Devonian of the Canning Basin, Western Australia.—In: P.D. Crevello, J.L. Wilson, J.F. Sarg and J.F. Read (eds.): Controls on carbonate platforms and basin development.—SEPM Spec. Publs. 44, 187–202, Tulsa

  • Pratt, B. (1984): Epiphyton and Renalcis—Diagenetic microfossils from calcification of coccoidblue-green algae.—J. Sed. Petrol., 54/3, 948–971, Tulsa

    Google Scholar 

  • Pratt, B.R. (1995): The origin, biota and evolution of deep-water mud-mounds.—In: Monty, C.L.V., Bosence, D.W.J., Bridges, P.H. and Pratt, B.R. (eds.): Carbonate Mud-Mounds: their Origin and Evolution.—Spec. Publs. Int. Ass. Sediment., 23, 49–123, Oxford

  • Préat, A., Mamet, B., Bernard, A. and Gillan, D. (1999): Bacterial mediation, red matrices diagenesis, Devonian, Montagne Noire (southern France)—Sed. Geol., 126, 223–242, Amsterdam

    Article  Google Scholar 

  • Rácz, L. (1984). Iberiaella, a new fossil alga from the middle Carboniferous of NW Spain.—Geol. Mijnbouw, 63, 333–336, 1 Pl., 2 Figs., Haarlem

    Google Scholar 

  • Reid, R.P. (1987): Nonskeletal peloidal precipitates in Upper Triassic reefs, Yukon territory (Canada).—J. Sed. Petrol., 57/5, 893–900, Tulsa

    Google Scholar 

  • Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C., Macinthyre, I.G., Paerl, H.W., Pinckney, J.L., Prufert-Bebout, L., Steppe, T.F. and DesMarais, D.J. (2000): The role of microbes in accretion, lamination and early lithification of modern marine stromatolites.—Nature, 406, 989–922, Hampshire

    Article  Google Scholar 

  • Reitner, J. (1993): Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia). Formation and Concept.—Facies, 29, 3–40, 8 Pls., 10 Figs., Erlange

    Article  Google Scholar 

  • Reitner, J. and Neuweiler, F., coords. (1995a). Mud Mounds: A polygenetic spectrum of fine-grained carbonate buildups. Facies, 32, 70 p, Erlangen

  • Reitner, J. and Neuweiler, F. (1995b): Supposed principal controlling factors of rigid micrite buildups.—In: Reitner, J. and Neuweiler, F. (coords.): Mud Mounds: a Polygenetic Spectrum of Fine-grained Carbonate Buildups.—Facies, 32, 62–65, Erlangen

  • Reitner, J., Neuweiler, F. and Gautret, P. (1995): Modern and fossil automientes: implication for mud mounds genesis.— In: Reitner, J. and Neuweiler, F. (coords.): Mud Mounds: a Polygenetic Spectrum of Fine-grained Carbonate Buildups. —Facies, 32, 4–17, 5 Pls., Erlangen

  • Reitner, J., Thiel, V., Zankl, H., Michaelis, W., Wörheide, G. and Gautret, P. (2000): Organic and biogeochemical patterns in cryptic microbialites.—In: Riding, R.E. and Awramik, S.M. (eds.): Microbial Sediments.—149–160, Berlin Heidelberg, (Springer)

    Google Scholar 

  • Rhoads, D.C., Mulsow, S.G., Gutschick, R., Baldwin, C.T. and Stolz, J.F. (1991): The dysaerobic zone revisited: a magnetic facies?—In: Tyson, R.V. and Pearson, T.H. (eds.): Modern and Ancient Continental Shelf Anoxia.—Geol. Soc., Spec. Publ. 58, 187–199, London

  • Riding, R. (1991a): Classification of microbial carbonates.—In Riding, R. (ed.): Calcareous Algae and Stromatolies.—21–52, Berlin Heidelberg, (Springer)

    Google Scholar 

  • Riding, R. (1991b): Calcified cyanobacteria.—In: Riding, R. (ed.): Calcareous Algae and Stromatolites.—55–87, Berlin (Springer)

    Google Scholar 

  • Riding, R. (1992): Temporal variation in calcification in marine cyanobacteria.—J. Geol. Soc., 149, 979–989, London

    Google Scholar 

  • Riding, R. (1997): Part IX: Stromatolite decline: a brief reassessment. —In: F. Neuweiler, J. Reitner, and C. Monty (eds): Biosedimentology of Microbial Buildups. IGCP Project No. 380. Proceedings of 2nd meeting, Göttingen/Germany 1996.— Facies, 36, 227–230, Erlangen

  • Riding, R. (2000): Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms.—Sedimentology, 47/Suppl. 1, 179–214, Oxford

    Article  Google Scholar 

  • Riding, R. (2001). Biofilm architecture of Phanerozoic cryptic carbonate marine veneers.—Geology, 30/1, 31–34, Boulder

    Article  Google Scholar 

  • Saller, A.H., Harris, P.M., Kirkland, B.L. and Mazzullo, S.J. eds. (1999): Geologic Framework of the Capitan Reef.—SEPM Spec. Publ. 65, 224 p., Tulsa

    Google Scholar 

  • Sanchez de Posada, L.C., Martinez Chacon, M.L., Mendez, C.A., Menendez-Álvarez, J.R., Rio, L.M., Rodriguez, S., Truyols, J. and Villa, E. (1996): El Carbonifero marino del ambito Astur-Leones (Zona Cantabrica): sintesis paleontologica.—Rev. Esp. Paleont., no. extr., 82–96, Madrid

  • Sandberg, P. (1985): Aragonite cements and their occurrence in ancient limestones.—In: Schneidermann, N. and Harris, P.M. (eds.): Carbonate Cements.—SEPM, Spec. Publ., 36, 33–57, Tulsa

  • Schlager, W. (1981): The paradox of drowned reefs and carbonate platforms.—Geol. Soc. Am. Bull., 92, 197–211, Boulder

    Article  Google Scholar 

  • Schlager, W. (1999): Scaling of sedimentation rates and drowning of reefs and carbonate platforms.—Geology, 27, 183–186, Boulder

    Article  Google Scholar 

  • Schlager, W. (2000): Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems.—In: Insalaco, E., Skelton, P.W. and Palmer, T.J. (eds.): Carbonate Platform Systems: Components and Interactions.—Geol. Soc. London, Spec. Publ., 178, 217–227, London.

  • Schlager, W. and Camber, O. (1986): Submarine slope angles, drowning unconformities, and self-erosion of limestone escarpments. —Geology, 14, 762–765, Boulder

    Article  Google Scholar 

  • Schlager, W. and Ginsburg, R.N. (1981): Bahama carbonate platforms-the deep and the past.—Mar. Geol., 44, 1–24, Amsterdam

    Article  Google Scholar 

  • Shen, J.Yu.C. and Bao, H. (1997): A Late-Devonian (Famennian) Renalcis-Epiphyton reef at Zhaijiang, Guilin, South China.— Facies, 37, 195–210, Erlangen

    Article  Google Scholar 

  • Stanton, R.J.J., Jeffery, D.L. and Guillementte, R.N. (2000): Oxygen minimum zone and internal waves as potential controls on location and growth of Waulsortian mounds (Mississippian, Sacramento Mountains, New Mexico).—Facies, 42, 161–176, Erlangen

    Article  Google Scholar 

  • Stephens, N.P. and Sumner, D.Y. (2002): Renalcids as fossilized biofilm clusters.—Palaios, 17/3, 225–236, Tulsa

    Google Scholar 

  • Sun, S.Q. and Wright, V.P. (1989): Peloidal fabrics in Upper Jurassic reefal limestones, Weald Basin, southern England. —Sed. Geol., 65, 165–181. Amsterdam

    Article  Google Scholar 

  • Thompson, J.B. (2000): Microbial whiting.—In: Riding, R.E. and Awramik, S.M. (eds.): Microbial Sediments.—250–260. Berlin Heidelberg, (Springer).

    Google Scholar 

  • Tinker, S.W. (1998): Shelf-to-basin facies distributions and sequence stratigraphy of a steep-rimmed carbonate margin Capitan Depositional Systems, McKittrick Canyon, New Mexico and Texas.—J. Sed. Res., 68, 1146–1174, Tulsa

    Google Scholar 

  • Trichet, J. and Défarge, C. (1995): Non-biologically supported organomineralization.—Bull. Inst. Oceanogr. Monaco, Num. Spéc., 14, 203–236.

    Google Scholar 

  • Tucker, M.E. and Wright, V.P. (1990): Carbonate Sedimentology. —482 p., Oxford (Blackwell Scientific)

    Google Scholar 

  • Veevers, J.J. and Powell, C.M. (1987): Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica.—Geol. Soc. Am., Bull., 98, 475–487, Boulder

    Article  Google Scholar 

  • Villa, E. (1995): Fusalinaceous Carboníferos del Este de Asturias (N de España).—Université Claude Bernard-Lyon I. Collection Biostratigraphie du Paléozoïque, 13, 1–261.

    Google Scholar 

  • Villa, E., Sanchez de Posada, C., Fernandez, L.P., Martinez-Chacon, M.L. and Stavros, C. (2001): Foraminifera and biostratigraphy of the Valdeteja Formation stratotype (Carboniferous, Cantabrian Zone, NW Spain).—Facies, 45, 59–86, Erlangen

    Google Scholar 

  • Webb, G.E. (1996): Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement?)— Sedimentology, 43, 947–971, Oxford

    Article  Google Scholar 

  • Webb, G.E. (2001): Famennian mud-mounds in the proximal forereef slope, Canning Basin, Western Australia. Sed. Geol., 145, 295–315, Amsterdam

    Article  Google Scholar 

  • Whalen, M.T., Eberli, G.P., Van Buchem, F.S.P., Mountjoy, E.W. and Homewood, P.W. (2000): Bypass margins, basin-restricted wedges, and platform-to-basin correlation Upper Devonian, Canadian Rocky Mountains: implications for sequence stratigraphy of carbonate platform systems.—J. Sed. Res., 70, 913–936, Tulsa

    Google Scholar 

  • Wilber, R.J., Milliman, J.D. and Halley, R.B. (1990): Accumulation of bank-top sediment on the western slope of Great Bahama Bank: rapid progradation of carbonate megabank.— Geology, 18, 970–974, Boulder

    Article  Google Scholar 

  • Wood, R. (1999): Reef evolution.—354 p., Oxford (Oxford University Press)

    Google Scholar 

  • Wood, R. (2000): Novel paleoecology of a postextinction reef: Famennian (Late Devonian) of the Canning basin, northwestern Australia. Geology, 28/11, 987–990, Boulder

    Article  Google Scholar 

  • Wood, R. (2001): Are reefs and mud mounds really so different?— Sed. Geol., 145, 161–171, Amsterdam

    Article  Google Scholar 

  • Wood, R., Dickson, J.A.D. and Kirkland, B.L. (1996): New observations on the ecology of the Permian Capitan Reef, Texas and New Mexico.—Paleont., 39, Part 3, 733–762

    Google Scholar 

  • Wright, V.P. and Faulkner, T.J. (1990): Sediment dynamics of Early Carboniferous ramps: a proposal.—Geol. J., 25, 139–144, Chichester

    Article  Google Scholar 

  • Yates, K.K. and Robbins, L.L. (1998): Production of carbonate sediments by a unicellular green alga.—Am. Mineral. 83, 1503–1509, Washington

    Google Scholar 

  • Yates, K.K. and Robbins, L.L. (1999): Radioisotope tracer studies of inorganic carbon and Ca in microbially derived CaCO3— Geoch. Cosmoch. Ac., 63/1, 129–136, Amsterdam

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Della Porta, G., Kenter, J.A.M., Bahamonde, J.R. et al. Microbial boundstone dominated carbonate slope (Upper Carboniferous, N Spain): Microfacies, lithofacies distribution and stratal geometry. Facies 49, 175–207 (2003). https://doi.org/10.1007/s10347-003-0031-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-003-0031-0

Keywords

Navigation