Skip to main content
Log in

The Karsteniceras level: Dysoxic ammonoid beds within the Early Cretaceous (Barremian, Northern Calcareous Alps, Austria)

  • Published:
Facies Aims and scope Submit manuscript

Summary

An Early Cretaceous mass-occurrence of ammonites in the Ternberg Nappe of the Northern Calcareous Alps (Upper Austria) is described for the first time. The mass-occurrence (section KB1-B=Klausrieglerbach 1, section B) dominated by Karsteniceras ternbergense Lukeneder is of Early Barremian age (Moutoniceras moutonianum Zone). The Karsteniceras mass-occurrence comprises eight different genera, each apparently represented by a single species, of which four are identified to species level. About 300 specimens of K. ternbergense between 5 and 37 mm in diameter were investigated. Two groups showing thick main ribs but different maximum size are distinguishable. The latter parameters are suggested to reflect sexual dimorphism within K. ternbergense, a condition that is most probably applicable to the whole leptoceratoid group. The geochemical results indicate that the Karsteniceras mass-occurrence within the described Lower Cretaceous succession was deposited under intermittent oxygen-depleted conditions associated with stable, salinity-stratified water masses. The rhythmicity of laminated black-marly lime-stone layers and light-grey bioturbated, organic-poor lime-stones suggests that the oxic and dysoxic conditions underwent highly dynamic changes. The deposition of the limestones in this interval occurred in an unstable environment and was controlled by short- and long-term fluctuations in oxygen levels. Karsteniceras inhabited areas of stagnant water with low dissolved oxygen; it showed peak abundance during times of oxygen depletion, which partially hindered other invertebrates from settling in such environments. The autochthonous Karsteniceras mass-occurrence can be assigned to the deposition-type of ‘Konservat Lagerstätte’, which is indicated by the preservation of phosphatic siphuncle structures and proved by the in situ preservation of aptychi within Karsteniceras ternbergense. Based on lithological and geochemical analysis combined with in vestigations of trace fossils, microfossils and macrofossils, an invasion of an opportunistic (r-strategist) Karsteniceras biocoenosis during nonfavorable conditions over the sea bed during the Lower Barremian is proposed for the KB1-B section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, P.A. (1988): The role of anoxia in the decay and mineralization of proteinaceous macrofossils.—Paleobiology 14, 139–145, Washington

    Google Scholar 

  • Arthur, M. A. and Schlanger, S. O. (1979): Cretaceous “oceanic anoxic events” as causal factors in development of reefreservoired giant oil fields.—AAPG Bull. 63, 870–885, Tulsa

    Google Scholar 

  • Avram, E. (1999): Some new species of the subfamily ‘Leptoceratodinae’ (Ancyloceratina, Ammonoidea) in uppermost Hauterivian and lower Barremian deposits from Rumaina.—Scripta Geol., Spec. 3, 31–43, Leiden

    Google Scholar 

  • Baird, G.C. and Brett, C.E. (1985): Reworking of sedimentary pyrite on euxinic seafloors, Devonian, western New York.— Bull. Amer. Ass. Petr. Geol. 69, p. 236, Tulsa

    Google Scholar 

  • Batt, R. J. (1993): Ammonite morphotypes as indicators of oxygenation in a Cretaceous epicontinental sea.—Lethaia 26, 49–63, Olso

    Google Scholar 

  • Bottjer, D.J., Campbell, K.A., Schubert, J.K. and Droser, M.L. (1995): Palaeoecological models, non-uniformitarism, and tracking the changing ecology of the past.—In: Bosence, D. W.J. and Allison, P.A. (eds.): Marine palaeoenvironmental analysis from fossils.—Geol. Soc., London, Spec. Public. 83, 7–26, London

  • Boudreau, B.P. and Jörgensen B.B. eds (2001): The benthic boundary layer: transport processes and biochemistry.—404 pp., Oxford University Press, New York

    Google Scholar 

  • Brenner, K. and Seilacher, A. (1978): New aspects about the origin of the Toarcian Posidonian Shales.—N. Jb. Geol. Pal., Abh. 157, 11–18, Stuttgart

    Google Scholar 

  • Bromley, R.G. and Ekdale, A.A. (1984): Chondrites: A trace fossil indicator of anoxia in sediments.—Science 224, 872–874, Washington

    Article  Google Scholar 

  • Burollet, P.F., Memmi, L. and M'Rabet, A. (1983): Le Crétacé inférieur de Tunisie. AperVu stratigraphique et sédimetologique.— Zitteliana 10, 225–264, München

    Google Scholar 

  • Busnardo, R. (1965): Le stratotype du Barrémien. Lithologie et macrofauna. 101–116. In Colloque sur le Crétacé inférieur (Lyon, Septembre 1963).—Mém. Bur. Rech. Géol. Min. 34, Lyon

  • Calvert, S.E. and Pedersen, T.F. (1992): Organic carbon accumulation and preservation in marine sediments: How important is anoxia?—In: Whelan, J. and Farrungton, J.W. (eds.): Organic matter: productivity, accumulation, and preservation in recent and ancient sediments.—231–263, Columbia University Press, New York

    Google Scholar 

  • Cecca, F. (1997). Late Jurássic and Early Cretaceous uncoiled ammonites: trophism-related evolutionary processes.—C. R. Acad. Sci. Paris, sér. II 325, 629–634, Paris

    Google Scholar 

  • — (1998): Hypothesis about the role of the trophism in the evolution of the uncoiled ammonites: the adaptive radiations of the Ancyloceratine (Ammonoidea) at the end of the Jurassic and in the Lower Cretaceous.—Rend. Fis. Acc. Lincei 9, 213–226. Rom

    Article  Google Scholar 

  • Cecca, F. and Landra, G. (1994). Late Barremian—early Aptian ammonites from the Maiolica Formation near Cesana Brianza (Lombardy Basin, Northern Italy).—Riv. Ital. Paleont. Stratigr. 100, 395–442, Mailand

    Google Scholar 

  • Cecca, F. and Pallini, G. (1994): Latest Hauterivien-Barremian ammonite biostratigraphy in the Umbria-Marche Apennines (Central Italy).—Géol. Alpine 20, 205–217, Grenoble

    Google Scholar 

  • Company, M., Sandoval, J. and Tavera J.M. (1995): Lower Barremian ammonite biostratigraphy in the Subbetic Domain (Betic Cordillera, southern Spain).—Cret. Research 16, 243–256, London

    Article  Google Scholar 

  • Dean, W.E. and Gardner, J.V. (1982): Origin and geochemistry of redox cycles of Jurassic to Eocene Age, Cape Verde Basin (DSDP Site 367), continental margin of north-west Africa.— In: Schlanger, S. O. and Cita, M. B. (eds). Nature and origin of Cretaceous carbon-rich facie.—55–78, Academic Press, New York

    Google Scholar 

  • Delanoy, G. (1997): Biostratigraphie des faunes d'ammonites à la limite Barrémien—Aptien dans la region d'Angles-Barreme-Castellane. Étude particulière de la famille des Heteroceratina Spath, 1922 (Ancyloceratina, Ammonoidea).—Ann. du Mus. d'Hist. Nat. de Nice 12, 1–269, Nizza

    Google Scholar 

  • Demaison, G.J. and Moore, G.T. (1980): Anoxic environments and oil source bed genesis.—AAPG Bull. 64, 1179–1209, Tulsa

    Article  Google Scholar 

  • Dietl, G. (1973): Middle Jurassic (Dogger) heteromorph ammonites.— In: Hallam, A. (ed.): Atlas of palaeobiogeography.— 283–285, Elsevier, Amsterdam

    Google Scholar 

  • — (1978): Die heteromorphen Ammoniten des Dogger (Stratigraphie, Taxonomie, Phylogenie, Ökologie).—Stutt. Beitr. Naturkunde 33, 1–76, Stuttgart

    Google Scholar 

  • Ekdale, A.-A. (1985): Paleoecology of marine endobenthos.— Palaeogeogr., Palaeoclimat., Palaeoecol. 50, 63–81, Amsterdam

    Article  Google Scholar 

  • Ekdale, A.A. and Mason, T.R. (1988). Characteristic trace-fossil associations in oxygen-poor sedimentary environments.— Geology 16, 720–723, Boulder

    Article  Google Scholar 

  • Gill, T. (1871): Arrangement of the Families of Mollusks.— Smith, Misc. Coll, 227, 49 pp., Washington

    Google Scholar 

  • Goldring, R. (1999): Field Palaeontology.—191 pp, Addison Wesley Longman, London

    Google Scholar 

  • Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Hardenbol, J. and Backstrom, S. (1999): On the Cretaceous time scale.—N. Jb. Geol. Paläont. Abh. 212, 3–14, Stuttgart

    Google Scholar 

  • Hoedemaeker, P.J. and Rawson, P.F. (2000): Report on the 5th International Workshop of the Lower Cretaceous Cephalopod Team (Vienna, 5 September 2000: Lukeneder, A. (organizer). —Cret. Research 21, 857–860, London

    Article  Google Scholar 

  • Karsten, H. (1858): Über die geognostischen Verhältnisse des Westlichen Colombien der heutigen Republiken Neu Granada und Ecuador.—Amtlicher Bericht der Versammlung deutscher Naturforscher und Aerzte 32, 80–117.

    Google Scholar 

  • Kidwell, S.M., Fürsich, F.T. and Aigner, T. (1986): Conceptual framework for the analysis and classification of shell concentrations. —Palaios 1, 228–238, Tulsa

    Article  Google Scholar 

  • Koma, T. (1978): Sulfur content and its environmental significance of Paleogene muddy sediments in a part of the Ishikari Coal Field, central Hokkaido, northern Japan.—Jour. Jap. Assoc. Petrol. Technol. 43, 10–18.

    Google Scholar 

  • Lukeneder, A. (1997): Zur Unterkreide Stratigraphie der Schrambachschichten auf Blatt 69 Großraming.—Jb. Geol. B.-A., 140/3, 370–372, Wien

    Google Scholar 

  • — (1998): Zur Biostratigraphie der Schrambach Formation in der Ternberger Decke (O.-Valanginium bis Aptium des Tiefbajuvarikums-Oberösterreich). —Geol. Paläont. Mitteil. Insbruck 23 (5. Jahrestagung der ÖPG, Lunz 1998), 127–128, Innsburck

    Google Scholar 

  • — (1999): Acrothoracica-Bohrspuren an einem Belemnitenrostrum (Unterkreide, Obervalanginium: Oberösterreich).— Ann. Naturhis. Mus. Wien 101/A, 137–143, Wien

    Google Scholar 

  • — (2001): Siphuncle Structures in Barremian (Lower Cretaceous) Ammonites from Austria.—Ann. Naturhist. Mus. Wien 102/A, 69–83, Wien.

    Google Scholar 

  • Lukeneder, A. and Tanabe, K. 2002. In situ finds of aptychi in the Barremian of the Alpine Lower Cretaceous (Barremian, Northern Calcareous Alps, Upper Austria).—Cret. Research 23, 15–24, London

    Article  Google Scholar 

  • McLeod, K.G. and Hoppe, K.A. (1992): Evidence that inoceramid bivalves were benthic and harbored chemosynthetic symbionts. —Geology 20, 117–120, Boulder

    Article  Google Scholar 

  • Memmi, L. (1981): Biostratigraphie du Crétacé inférieur de Tunisie nord-orientale.—Bull. Soc. Géol. Fr. anc. 7, 175–183, Paris

    Google Scholar 

  • Nikolov, T.G. (1960): La fauna d'ammonites dans le Valanginien du Prébalkan Oriental. Trav. Géol. Bulgarie.—Série Paléont. 2, 143–264, Sofia

    Google Scholar 

  • Oschmann, W. (1991): Distribution, dynamics and palaeontology of Kimmeridgian (Upper Jurassic) shelf anoxia in western Europe.—In: Tyson, R.V. and Pearson, T.H. (eds.): Modern and ancient continental shelf anoxia.—J. Geol. Soci., London, Spec. Public, 58, 381–395, London

  • — (1993): Environmental oxygen fluctuations and the adaptive response of marine benthic organisms.—J. Geol. Soc., London 150,381–395, London

    Google Scholar 

  • — (1994): Aadaptive pathways of benthic organisms in marine oxygen-controlled environments.—N. Jb. Geol. Paläont. Abh., 191, 394–444, Stuttgart

    Google Scholar 

  • Pedersen, T.F. and Calvert, S.E. (1990): Anoxia vs. productivity: What controls the formation of organic-rich-sediments and sedimentary rocks?.—AAPG Bull. 74, 454–466, Tulsa

    Article  Google Scholar 

  • Plotnick, R.E. (1987): Taphonomy of a modern shrimp: implications for the arthropod fossil record.—Palaios 1, 286–293, Tulsa

    Article  Google Scholar 

  • Raiswell, R. and Berner, R.A. (1985): Pyrite formation in euxinic and semi-euxinic sediments.—Amer. J. Sci. 285, 710–724, New Haven

    Article  Google Scholar 

  • Rhoads, D.C. (1975): The paleoecological and environmental significance of trace fossils.—In: Frey, R.W. (ed.), The study of Trace Fossils.—147–160, New York (Springer)

    Google Scholar 

  • Rhoads, D.C. and Morse, J.W. (1971): Evolutionary and ecologic significance of oxygen-deficient basins.—Lethaia 4, 413–428, Oslo

    Google Scholar 

  • Rieber, H. (1977): Eine Ammonitenfauna aus der oberen Maiolica der Breggia-Schlucht (Tessin/Schweiz).—Eclogae geol. Helv. 70/3, 777–787, Basel

    Google Scholar 

  • Röhl, H.J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. and Scwark, L. (2001): The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen depleted ecosystem controlled by sea level and palaeoclimate.—Palaeogeogr., Palaeoclimat. Palaeoecol. 165, 27–52, Amsterdam

    Article  Google Scholar 

  • Royo y Gomez, J. (1945): Fossiles del Barremiense Colombiano. Compilacion de los Estudios geologicos oficiales en Colombia. —Serv. Geol. Nac. Bogotá 6, 459–494. Bogotá

    Google Scholar 

  • Ryan, W.B.F. and Cita, M.B. (1977): Ignorance concerning episodes of oceanwide stagnation.—Marine Geology 23, 197–215, Amsterdam

    Article  Google Scholar 

  • Savrda, C.E. and Bottjer, D.J. (1989): Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: application to Upper Cretaceous Niobrara Formation, Colorado.—Palaeogeogr., Palaeoclimat., Palaleoecol. 74, 49–74, Amsterdam

    Article  Google Scholar 

  • Savrda, C.E. and Bottjer, D.J. (1991): Oxygen-related biofacies in marine strata: an overview and update.—In: Tyson, R.V. and Pearson, T.H. (eds): Modern and ancient continental shelf anoxia.—Geol. Soc. Londonn, Spec. Publi. 58, 201–220, London

  • Savrda, C.E., Bottjer, D.J. and Gorsline, D.S. (1984): Development of a comprehensive oxygen-deficient marine biofacies model: evidence from Santa Monica, San Pedro, and Santa Barbara Basins, California Continental Borderlands.—AAPG Bull. 68, 201–220, Tulsa

    Google Scholar 

  • Schlanger, S.O. and Jenkyns, H.C. (1976): Cretaceous oceanic anoxic events: causes and consequences.—Geol.-Mijnbouw 55, 179–184, Utrecht.

    Google Scholar 

  • Schwabe, O. and Ricken, W. (1999): Limitierende Faktoren ond ozeanographische Bedingungen bei der Pyritbildung im Posidonienschiefer (Lias epsilon Südwestdeutschland).— Zbl. Geol. Paläont. 9, 1005–1019, Stuttgart

    Google Scholar 

  • Seilacher, A. (1970): Begriffund Bedeutung der Fossil-Lagerstätten. —N. Jb. Geol. Paläo., Abh. 1970, 34–39, Stuttgart

    Google Scholar 

  • Seilacher, A., Analib, F., Dietl, G. and Gocht, H. (1976) Preservational history of compressed ammonites from southern Germmany.—N. Jb. Geol. Paläont., Abh. 152, 307–356, Stuttgart

    Google Scholar 

  • Seilacher, A., Reif, W.E. and Westphal, F. 1985: Sedimentological, ecological and temporal patterns of fossil Lagerstätten.— Phil. Trans. Roy. Soci. London B 311, 5–26, London

    Article  Google Scholar 

  • Stöhr, D. (1994): Ammonoidea aus Schwarzschiefern von La Stua (Norditalien, Provinz Belluno).—Giessener geol. Schriften 51 (Festschrift Blind), 291–311, Giessen

    Google Scholar 

  • Stöhr, D. and Hippenstiel, G. (1996): Biotratigraphie, Lithologie und Paläogeographie der Unterkreide von La Stua (Südalpin, Ampezzaner Dolomiten, Norditalien).—Giessener geol. Schriften 56 (Festschrift Knoblich), 317–346, Giesen

    Google Scholar 

  • Thiede, J. and van Andel, T.H. (1977): The paleoenvironment of anaerobic sediments in the late Mesozoic South Atlantic Ocean.—Earth and Planetary Scie Letters 33, 301–309, Amsterdam

    Article  Google Scholar 

  • Thieuloy, J.P. (1966): Leptocères berriasiens du massif de la Grande-Chartreuse.—Trav. Lab. Géol. Fac. Sci. l'Univ. Grenoble 42, 281–295, Grenoble

    Google Scholar 

  • Uhlig, V. (1883): Die Cephalopodenfauna der Wernsdorferschichten. —Denkschr. Österr. Akad. Wiss., math.-naturwiss. Kl. 46, 127–290, Wien

    Google Scholar 

  • Vasicek, Z. (1972a): Ammonoidea of the Tesín-Hradiste Formation (Lower Cretaceous) in the Moravskoslezské beskydy Mts.—Rozpr. Ústr. Úst. geol. 38, 1–103, Prag.

    Google Scholar 

  • — (1972b): Zur Barreme-Apt Grenze in der schlesischen Einheit. —Sbor. ved. Praci Vys. Sk. bàn., R. horn.-geol. 18(4) 101–107, Ostrava

    Google Scholar 

  • — (1977): Hukvaldy-die neue makrofaunistische Lokalität der Schlesischen Einheit (Hauterive).—Cas. Slez. Muz. Sér. A 26, 129–136 Opava

    Google Scholar 

  • — (1981): Die Clansay-Ammoniten der höchsten Hradiste-Schichten (Silesische Einheit, Tschechoslowakei).—Sbor. ved. Praci Vys. Sk. bàn., R. horn.-geol. 25 (1979), 193–203. Ostrava

    Google Scholar 

  • — (1990): Unterkreide-Ammoniten aus neu abgeteuften schächten im Gebiet von Frenstát-Trojanovice (Äussere Karpaten, Silesische Einheit, CSFR).—Cas. Morav. Muz., Vedyprír. 75, 95–116, Brno

    Google Scholar 

  • Vasicek, Z. and Klajmon, P. (1998): Contribution to the knowledge of some small Early Barremian ammonites from Silesian Unit (Outer Carpathians, Czech republic).—Vest. Ces. Geol. Úst. 73, 331–342 Prag.

    Google Scholar 

  • Vasicek, Z. and Wiedmann, J. (1994): The Leptoceratoidinae: Small heteromorph ammonites from the Barremian.— Palaeontology 37, 203–239, London

    Google Scholar 

  • Westermann, G.E.G. (1990): New developments in ecology of Jurassic-Cretaceous ammonoids. 459–478.—In: Pallini, G., Cella, F., Cresta, S. and Santantonio, M. (eds): Fossili. Evoluzione, Ambiente, Atti II Convegno Pergola, Tecnostampa, Pergola

  • — (1996): Ammonoid Life and Habitat.—In: Landman, N.H., Tanabe, K. and Davis, R.A. (eds.): Ammonoid paleobiology. —Topics in Geobiology, 13, 607–707, New York, (Plenum)

    Google Scholar 

  • Wiedmann, J. (1966): Stammesgeschichte und System der posttriadischen Ammonoideen, ein Überblick (2. Teil).—N. Jb. Geol. Paläo., Abh. 127, 13–81. Stuttgart

    Google Scholar 

  • Wignall, P.B. (1990): Benthic palaeoecology of the Late Jurassic Kimmeridge Clay of England.—Spec. Papers in Palaeontology 43, 74 pp. London

    Google Scholar 

  • — (1993): Distinguishing between oxygen and substrate control in fossil benthic assemblages.—J. Geol. Soci, London 150, 193–196, London

    Google Scholar 

  • — (1994). Black shales.—Geol. Geophys. Monograph Series 30, 136 pp., Oxford (University Press)

    Google Scholar 

  • Wignall, P.B. and Hallam, A. (1991): Biofacies, stratigraphic distribution and depositional models of British onshore Jurassic black shales. 291–309. In Modern and Ancient Continental shelf Anoxia.—Geol. Soc., London, Spec. Publ. 58, London

  • Wright, C.W., Callamon, J.H. and Howarth, M.K. 1996. Cretaceous Ammonoidea. 1–362.—In: Kaesler, R.L. (ed): Treatise on invertebrate paleontology. Part L. Mollusca 4 Revised, (Geol. Soc.) Boulder

  • Zittel, K.A. (1884): Cephalopoda.—In: Zittel, K.A. (ed.): Handbuch der Paläontologie.—Band 1, 329–522, Munich

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukeneder, A. The Karsteniceras level: Dysoxic ammonoid beds within the Early Cretaceous (Barremian, Northern Calcareous Alps, Austria). Facies 49, 87–100 (2003). https://doi.org/10.1007/s10347-003-0026-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-003-0026-x

Keywords

Navigation