Advertisement

Facies

, Volume 50, Issue 1, pp 19–33 | Cite as

Lacustrine basin to delta evolution in the Zagorje Basin, a Pannonian sub-basin (Late Miocene: Pontian, NW Croatia)

  • Marijan KovácicEmail author
  • Jozica Zupanic
  • Ljubomir Babic
  • Davor Vrsaljko
  • Mirjana Miknic
  • Koraljka Bakrac
  • Ivan Hecimovic
  • Radovan Avanic
  • Mato Brkic
Original Article

Abstract

Pontian deposits of the Zagorje Basin constitute a coarsening-upward succession, which reflects the infilling style of this Pannonian sub-basin, i.e. the progradation of clastic systems into the brackish lake. Six facies differentiated correspond to lake floor, channelled slope, distal and proximal pro-delta, distal and proximal mouth bars, and lagoon/bay to swamp and alluvial environments. The deposition in the mouth-bar area was dominated by frictional forces. The upper-stage plane-bed sands are the main mouth-bar facies, which is uncommon in the geological record. The main factors for the origin of such bars include an abundant sand supply by the high-energy fluvial system(s), low-energy of the receiving basin and shallow depositional depth. Prolonged, catastrophic floods generated sustained hyperpycnal flows, which bypassed the mouth-bar area and fed the slope/pro-delta. The high ratio between sediment supply and subsidence rate resulted in a fast moving ‘progradational wave’, which involved the entire SW Pannonian Basin, including the Zagorje Basin.

Keywords

Lacustrine delta Friction-dominated effluent Mouth bars Pannonian Basin Zagorje Basin 

Notes

Acknowledgements

This work was funded by the Ministry of Science and Technology of Croatia through projects nos. 0181001 and 0119403. The senior author is grateful to Dr Davor Pavelic for advice and discussions. Mr R. Koscal and Mr N. Kurtanjek produced the drawings. Two anonymous reviewers provided comments, which helped in improving the manuscript.

References

  1. Anicic B, Jurisa M (1984) Sheet Rogatec. Basic geological map, 1:100,000. Geol Inst Ljubljana and Geol Inst Zagreb. Federal Geol Inst BeogradGoogle Scholar
  2. Arnott RWC, Hand BM (1989) Bedforms, primary structures and grain fabric in the presence of suspended sediment rain. J Sediment Petrol 59:1062–1069Google Scholar
  3. Basch O (1981) Sheet Ivanic-Grad. Basic geological map, 1:100,000. Geol Inst Zagreb. Federal Geol Inst BeogradGoogle Scholar
  4. Basch O (1995) Geological map of Mt Medvednica. In: Sikic K (ed) Geological guide of Mt. Medvednica. Geol Inst and INA-Industrija nafte d.d., ZagrebGoogle Scholar
  5. Basch O, Pavelic D, Bakrac K (1995) Gornjopontski facijesi sjevernog krila Konjscinske sinklinale kod Huma Zabockog (Hrvatsko Zagorje). Proc 1st Croat Geol Congr 1:57–61Google Scholar
  6. Berczi I, Phillips RL (1985) Processes and depositional environments within Neogene deltaic-lacustrine sediments, Pannonian Basin, southeast Hungary. Geophys Trans Spec Edn 31(1–3):55–74Google Scholar
  7. Bouma A H (1962) Sedimentology of some flysch deposits. Elsevier, AmsterdamGoogle Scholar
  8. Buatois LA, Mángano MG (1995) Sedimentary dynamics and evolutionary history of a Late Carboniferous Gondwanic lake in north-western Argentina. Sedimentology 42:415–436Google Scholar
  9. Carbonel P, Colin J-P, Danielopol DL, Löffler H, Neustrueva I (1988) Paleoecology of limnic ostracodes: a review of some major topics. Palaeogeogr Palaeoclim Palaeoecol 62:413–461CrossRefGoogle Scholar
  10. Cowan EJ (1991) The large-scale architecture of the fluvial Westwater Canyon Member, Morrison Formation (Upper Jurassic), San Juan Basin, New Mexico. In: Miall AD, Tyler N (eds) The three-dimensional facies architecture of terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery. Concepts in Sedimentology and Paleontology 3, SEPM, Tulsa, pp 80–93Google Scholar
  11. Csontos L, Nagymarosy A (1998) The Mid Hungarian line: a zone of repeated tectonic inversions. Tectonophysics 297:51–71CrossRefGoogle Scholar
  12. Decker K, Peresson H (1996) Tertiary kinematics in the Alpine–Carpathian–Pannponian system: links between thrusting, transform faulting and crustal extension. In: Wessely G, Liebl W (eds) Oil and gas in Alpidic thrusts and basins of Central and Eastern Europe. Eur Assoc Geosci Eng Spec Publ 5:69–77Google Scholar
  13. Gustavson TC, Ashley GM, Boothroyd JC (1975) Depositional sequences in glaciolacustrine deltas. In: Jopling AV, McDonald BC (eds) Glaciofluvial and glaciolacustrine sedimentation. SEPM Spec Publ 23:264–280Google Scholar
  14. Horváth F (1988) Thickness of Neogene–Quaternary basin fill. Map 8. In: Royden LH, Horváth F (eds) The Pannonian Basin. Am Assoc Petrol Geol Mem 45, TulsaGoogle Scholar
  15. Ivkovic Z (1998) The evolution of the Sava depression in the environs of Gojlo during the Late Miocene (in Croatian, English summary). MSc Thesis, University of ZagrebGoogle Scholar
  16. Ivkovic Z, Matej S, Skoko M (2000) Seismostratigraphic interpretation of Upper Miocene and Pliocene sediments of the Sava Depression. Proc 2nd Croat Geol Congr: 219–222Google Scholar
  17. Jenko K (1944) Stratigraphisch-tektonische Verhältnisse der pliozänen Ablagerungen des südlichen Abhänges der Pozega und Kasonja Gebirge (in Croatian, German summary). Vjestnik Hrv drz geol zavoda i Hrv drz geol muz 2–3:89–159, ZagrebGoogle Scholar
  18. Jopling AV, Walker RG (1968) Morphology and origin of ripple-drift cross-lamination, with examples from the Pleistocene of Massachusetts. J Sediment Petrol 38:971–984Google Scholar
  19. Juhász G (1991) Lithostratigraphical and sedimentological framework of the Pannonian (s.l.) sedimentary sequence in the Hungarian Plain (Alf ld), Eastern Hungary. Acta Geol Hungarica 34:53–72Google Scholar
  20. Juhász G, Magyar I (1992) A pannóniai (s.l.) litofáciesek és molluszka-biofáciesek jellemzése és korrelációja az Alföldön. Review and correlation of the Late Neogene (Pannonian s.l.) lithofacies and mollusc biofacies in the Great Plain, eastern Hungary. Földtani Közlöny 122(2–4):167–194Google Scholar
  21. Kneller BC, Branney M J (1995) Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology 42:607–616Google Scholar
  22. Korpás-Hódi M, Pogácsás G, Simon E (1992) Paleogeographic outlines of the Pannonian s.l. of the southern Danube–Tisza Interfluve. Acta Geol Hungarica 35:145–163Google Scholar
  23. Kostaschuk RA, McCann SB (1987) Subaqueous morphology and slope processes in a fjord delta, Bella Coola, British Columbia. Can J Earth Sci 24:52–59Google Scholar
  24. Kovác M, Márton E (1998) To rotate or not rotate: Palinspastic reconstruction of the Carpatho–Pannonian area during the Miocene. Slovak Geol Mag 4(2):75–85Google Scholar
  25. Kovác M, Nagymarosy A, Soták J, Sutovská K (1993) Late Tertiary paleogeographic evolution of the Western Carpathians. Tectonophysics 226:401–415CrossRefGoogle Scholar
  26. Kovácic M (1999) Sedimentology of the Pontian deposits in northern part of Mt Medvednica (in Croatian, English summary). MSc Thesis, University of ZagrebGoogle Scholar
  27. Kranjec V, Blaskovic I (1976) Geology of the Jagma–Popovac–Paklenica area (Western Slavonia; Northern Croatia) as regards the occurrences of quartz-sands (in Croatian, English summary). Geol Vjesnik 29:91–123Google Scholar
  28. Kranjec V, Prelogovic E (1974) On the Tertiary and Quaternary paleogeography and neotectonics in Croatia (in Croatian, English summary). Geol vjesnik 27:95–112Google Scholar
  29. Kranjec V, Hernitz Z, Prelogovic E (1973) Ein Beitrag zur Kenntnis j ngerer Tertiärschichten des Medvednica-Gebirges (Nordwest-Kroatien) (in Croatian, German summary). Geol Vjesnik 25:65–100Google Scholar
  30. Lucic D, Saftic B, Krizmanic K, Prelogovic E, Britvic V, Mesic I, Tadej J (2001) The Neogene evolution and hydrocarbon potential of the Pannonian Basin in Croatia. Mar Petrol Geol 18:133–147CrossRefGoogle Scholar
  31. Magyar I (1995) Late Miocene mollusc biostratigraphy in the eastern part of the Pannonian Basin (Tisznt l, Hungary). Geol Carpathica 46:29–36Google Scholar
  32. Magyar I, Geary DH, Mller P (1999a) Palaeogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr Palaeoclim Palaeoecol 147:151–167CrossRefGoogle Scholar
  33. Magyar I, Geary DH, Lantos M, M ller P, Sütö-Szentai M (1999b) Integrated biostratigraphic, magnetostratigraphic and chronostratigraphic correlations of the Late Miocene Lake Pannon deposits. Acta Geol Hungarica 42:5–31Google Scholar
  34. Martinsen OJ (1990) Fluvial, inertia-dominated deltaic deposition in the Namurian (Carboniferous) of northern England. Sedimentology 37:1099–1113Google Scholar
  35. Mattick RE, Phillips RL, Rumpler J (1988) Seismic stratigraphy and depositional framework of sedimentary rocks in the Pannonian basin in southeastern Hungary. In: Royden LH, Horvath F (eds) The Pannonian Basin. Am Assoc Petrol Geol Mem 45:117–145Google Scholar
  36. Nehring S (1997) Dinoflagellate resting cysts from recent German coastal sediments. Bot Mar 40:307–324Google Scholar
  37. Orton GJ (1988) A spectrum of middle Ordovician fan deltas and braidplain deltas, North Wales: a consequence of varying tectonic conditions. In: Nemec W, Steel RJ (eds) Fan deltas: sedimentology and tectonic settings. Blackie, Glasgow, pp 23–49Google Scholar
  38. Orton GJ, Reading HG (1993) Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology 40:475–512Google Scholar
  39. Ozegovic F (1944) Beitrag zur Geologie des jüngeren Tertiärs Kroatiens auf Grund der Ergebnisse aus neueren Tiefbohrungen (in Croatian, German summary). Vjestnik Hrv Geol Zavoda i Hrv Geol Muz 2–3:391–491, ZagrebGoogle Scholar
  40. Pavelic D (2001) Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Res 13:359–376CrossRefGoogle Scholar
  41. Peresson H, Decker K (1996) From extension to compression: Late Miocene stress inversion in the Alpine–Carpathian–Pannonian transition area. Mitt Ges Geol Bergbaustud Österr 41:75–86Google Scholar
  42. Pogácsás Gy, Lakatos L, Révész I, Újszászi K, Vakarcs G, Várkonyi L, Várnai P (1988) Seizmic facies, electro facies and Neogene sequence chronology of the Pannonian Basin. Acta Geol Hungarica 31:175–207Google Scholar
  43. Prior DB, Bornhold BD (1989) Submarine sedimentation on a developing Holocene fan delta. Sedimentology 36:1053–1076Google Scholar
  44. Prior DB, Bornhold BD (1990) The underwater development of Holocene fan deltas. In: Colella A, Prior DB (eds) Coarse-grained deltas. Int Assoc Sci Spec Publ 10:75–90Google Scholar
  45. Prior DB, Wiseman WJ Jr, Bryant WR (1981) Submarine chutes on the slopes of fjord deltas. Nature 290:326–328Google Scholar
  46. Reineck HE, Singh IB (1980) Depositional sedimentary environments, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  47. Rögl F (1996) Stratigraphic correlation of the Paratethys Oligocene and Miocene. Mitt Ges Geol Bergbaustud Österr 41:65–73Google Scholar
  48. Rögl F (1998) Paleogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann Naturhist Mus Wien 99/A:279–310Google Scholar
  49. Rögl F, Steininger FF (1983) Vom Zerfall der Tethys zu Mediterran und Paratethys. Ann Naturhist Mus Wien 85/A:135–163Google Scholar
  50. Royden LH (1988) Late Cenozoic tectonics of the Pannonian Basin system. In: Royden LH, Horváth F (eds) The Pannonian Basin. Am Assoc Petrol Geol Mem 45, Tulsa, pp 27–48Google Scholar
  51. Royden LH, HorvathF, Burchfiel BC (1982) Transform faulting, extension, and subduction in the Carpathian Pannonian region. Geol Soc Am Bull 93:717–725Google Scholar
  52. Scavnicar B (1979) Sandstones of the Pliocene and Miocene age in the Sava River depression. Znan savjet za naftu Jugosl akad znan umjet. 3rd Znan Skup Sekc Primj Geol Geof Geokem 2:351–382Google Scholar
  53. Sclater J, Royden LH, Horvath F, Burchfiel BC, Semken S, Stegena L (1980) The formation of the intra-Carpathian basins as determined from subsidence data. Earth Planet Sci Lett 51:139–162Google Scholar
  54. Sikic K, Basch O, Simunic An (1977) Sheet Zagreb. basic geological map, 1:100,000. Geol Inst Zagreb. Federal Geol Inst BeogradGoogle Scholar
  55. Sikic K, Basch O, Simunic An (1979) Geology of the sheet Zagreb (in Croatian, English summary). Basic geological map, 1:100,000. Federal Geol Inst, BeogradGoogle Scholar
  56. Simunic An, Simunic Al (1987) The reconstruction of neotectonic occurrence in north-western Croatia based on analyses of Pontian sediments (in Croatian, English summary). Rad Jugosl Akad 431:155–177Google Scholar
  57. Simunic A, Pikija M, Hecimovic I, Simunic Al (1981) Geology of the sheet Varazdin. Basic geological map, 1:100,000 (in Croatian, English summary). Federal Geol Inst BeogradGoogle Scholar
  58. Simunic A, Pikija M, Hecimovic I (1982) Sheet Varazdin. Basic geological map, 1:100,000. Geol Inst Zagreb. Federal Geol Inst BeogradGoogle Scholar
  59. Steininger FF (1999) Chronostratigraphy, geochronology and biochronology of the Miocene “European land mammal mega-zones” (ELMMZ) and the Miocene “Mammal-zones (MN-zones)”. In: Rössner GE, Heissig K (eds) The Miocene land mammals of Europe. Verlag Dr. Friedrich Pfeil, München, pp 9–24Google Scholar
  60. Sütö-Szentai M (1988) Microplankton zones of organic skeleton in the Pannonian s.l. stratum complex and in the upper part of the Sarmatian strata. Acta Bot Hungarica 34:339–356Google Scholar
  61. Talbot MR, Allen PA (1996) Lakes. In: Reading HG (ed) Sedimentary environments, 3rd edn. Blackwell, Oxford, pp 83–124Google Scholar
  62. Tomljenovic B, Csontos L (2001) Neogene–Quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zagorje and Karlovac Basins, Croatia). Int J Earth Sci 90:560–578CrossRefGoogle Scholar
  63. Tyson RV (1987) The genesis and palynofacies characteristics of marine petroleum source rocks. In: Brooks J, Fleet AJ (eds) Marine petroleum source rocks. Geol Soc Suppl Publ 26:47–67Google Scholar
  64. Vakarcs G, Vail PR, Tari G, Pogácsás G, Mattick RE, Szabó A (1994) Third-order Middle Miocene—Early Pliocene depositional sequences in the prograding delta complex of the Pannonian Basin. Tectonophysics 240:81–106CrossRefGoogle Scholar
  65. Velic J (1985) On differences of velocities and accelerations of Pannonian and Pontian radial movements in the Sava River depression (in Croatian, English summary). Geol Vjesnik 38:131–147Google Scholar
  66. Vrbanac B (1996) Paleostructural and sedimentologic analyses of Upper Pannonian sediments of the Ivanic Grad Formation in the Sava depression. PhD Thesis (in Croatian, English summary). University of ZagrebGoogle Scholar
  67. Wood ML, Ethridge FG (1988) Sedimentology and architecture of Gilbert- and mouth bar-type fan deltas, Paradox Basin, Colorado. In: Nemec W, Steel RJ (eds) Fan deltas: sedimentology and tectonic settings. Blackie, Glasgow, pp 251–263Google Scholar
  68. Wright LD (1977) Sediment transport and deposition at river mouths: a synthesis. Geol Soc Am Bull 88:857–868Google Scholar
  69. Wright LD, Coleman JM (1974) Mississippi River mouth processes: effluent dynamics and morphologic development. J Geol 82:751–778Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Marijan Kovácic
    • 1
    Email author
  • Jozica Zupanic
    • 2
  • Ljubomir Babic
    • 3
  • Davor Vrsaljko
    • 1
  • Mirjana Miknic
    • 1
  • Koraljka Bakrac
    • 1
  • Ivan Hecimovic
    • 1
  • Radovan Avanic
    • 1
  • Mato Brkic
    • 1
  1. 1.Institute of Geology10.000 ZagrebCroatia
  2. 2.Institute of Mineralogy and Petrography, Faculty of ScienceUniversity of Zagreb10.000 ZagrebCroatia
  3. 3.Institute of Geology and Paleontology, Faculty of ScienceUniversity of Zagreb10.000 ZagrebCroatia

Personalised recommendations