Skip to main content

Fatal landslides in Colombia (from historical times to 2020) and their socio-economic impacts

Abstract

Landslides typify one of the most hazardous natural phenomena fostering economic and even human losses worldwide. Several countries like Colombia, in South America, are hotspots for fatal landslides. In this contribution, we thoroughly reviewed four available databases, articles, grey literature and web resources, in order to build up a new catalogue of fatal landslides in Colombia. We gathered a catalogue of 2351 individual fatal landslides which caused about 37,959 deaths. Of these, we found 11 fatal events in historical times (pre-twentieth century). In modern times (1912–2020), we analysed landslides’ spatial and temporal distribution, finding that in central-western Colombia, particularly in the departments of Caldas, Risaralda, Quindío and Antioquia, these kinds of events are more frequent. Upward trends in these areas and a nationwide increase in the number of events in the last 20 years suggest that fatal landslides are far from being effectively mitigated. Our findings also show a strong correlation between the climate variability phenomenon known as El Niño Southern Oscillation (ENSO) and fatal landslides, particularly during those years when strong La Niña (cold phase of ENSO) events occur. Despite rainfall being the most common trigger for fatal landslides, we observed an increasing trend in anthropogenically related events in the last decade. Finally, we obtained multiple socio-economic indices and ran a statistical analysis at the departmental level in order to assess whether impoverished and vulnerable people are more affected by fatal landslides. We propose that in most cases, departments with low income, high levels of corruption and inequality are usually more affected.

This is a preview of subscription content, access via your institution.

Fig. 1

modified from Gómez et al. (2019)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  • Acosta J (1846) Relation de l’éruption boueuse sortie du volcan de Ruiz et de la catastrophe de Lagunilla dans la république de la Nouvelle - Grenade. Comptes rendus Hebd des séances l’Académie des Sci 709–710

  • Aristizábal E, Arango-Carmona MI, García-López IK (2020) Definición y clasificación de las avenidas torrenciales y su impacto en los Andes colombianos. Cuad Geogr Rev Colomb Geogr 29:242–258. https://doi.org/10.15446/rcdg.v29n1.72612

  • Aristizábal E, Sánchez O (2020) Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous Colombian Andes. Disasters 44:596–618. https://doi.org/10.1111/disa.12391

    Article  Google Scholar 

  • Aspden JA, Mccourt WJ, Brook M (1987) Geometrical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of Western Colombia. J Geol Soc London 144:893–905. https://doi.org/10.1144/gsjgs.144.6.0893

    Article  Google Scholar 

  • Ávila G, Guzmán M (2017) Landslide risk analysis incorporated to the land-use legislation in Colombia. In: Mikos M, Tiwari B, Yin Y, Sassa K. (eds) Advancing culture of living with landslides. 4th World Landslide Forum 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-53498-5_120

  • Badoux A, Andres N, Techel F, Hegg C (2016) Natural hazard fatalities in Switzerland from 1946 to 2015. Nat Hazards Earth Syst Sci 16:2747–2768. https://doi.org/10.5194/nhess-16-2747-2016

    Article  Google Scholar 

  • Bayona G, Cardona A, Jaramillo C et al (2012) Early Paleogene magmatism in the northern Andes: insights on the effects of Oceanic Plateau-continent convergence. Earth Planet Sci Lett 331–332:97–111. https://doi.org/10.1016/j.epsl.2012.03.015

    Article  Google Scholar 

  • Blanco-Quintero IF, García-Casco A, Toro LM et al (2014) Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). Int Geol Rev 56:1852–1872. https://doi.org/10.1080/00206814.2014.963710

    Article  Google Scholar 

  • Bustamante C, Cardona A, Archanjo CJ et al (2017) Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: a record of post-collisional arc magmatism. Lithos 277:199–209. https://doi.org/10.1016/j.lithos.2016.11.025

    Article  Google Scholar 

  • Carrilo AC (2009) Internal displacement in Colombia: humanitarian, economic and social consequences in urban settings and current challenges. International Review of the Red Cross 91(875):527–546. https://doi.org/10.1017/S1816383109990427

    Article  Google Scholar 

  • Casadevall T, Schuster R, Scott K (1994) Preliminary report on the effects of the June 6, 1994 sismo (Páez Earthquake), southern Colombia. USGS. pp 1–9.

  • Cediel F, Shaw R, Caceres C (2003) Tectonic assembly of the Northern Andean block. In: Bartolini C, Buffler RT, Blickwede J (eds) The Circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation and plate tectonics. pp 815–848

  • Cheng D, Cui Y, Su F et al (2018) The characteristics of the Mocoa compound disaster event, Colombia. Landslides 15:1223–1232. https://doi.org/10.1007/s10346-018-0969-1

    Article  Google Scholar 

  • Chicangana G (2005) The Romeral Fault System: a shear and deformed extinct subduction zone between oceanic and continental lithospheres in Northwestern South America. Earth Sci Res J 9:51–66

    Google Scholar 

  • Church M, Jakob M (2020) What is a debris flood?. Water Resour Res 56(8): e2020WR027144. https://doi.org/10.1029/2020WR027144

  • Cooper MA, Addison FT, Alvarez R et al (1995) Basin development and tectonic history of the Llanos Basin, and Middle Magdalena Valley, Colombia. Am Assoc Pet Geol Bull 79:1421–1443. https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865D

    Article  Google Scholar 

  • Dowling CA, Santi PM (2014) Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat Hazards 71:203–227. https://doi.org/10.1007/s11069-013-0907-4

    Article  Google Scholar 

  • Emberson R, Kirschbaum D, Stanley T (2021) Global connections between El Nino and landslide impacts. Nat Commun 12:2262. https://doi.org/10.1038/s41467-021-22398-4

    Article  Google Scholar 

  • ESRI (2016) How Emerging Hot Spot Analysis Works. https://desktop.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-toolbox/learnmoreemerging.htm Accessed 01 March 2022

  • Evans SG, Smoll LF, Zegarra-Loo J (2007) Los movimientos en masa de 1962 y 1970 en el nevado de Huascarán, Valle del Río Santa, Cordillera Blanca, Perú. In: Movimientos en Masa en la Región Andina: Una guía para la evaluación de amenazas. Servicio Nacional de Geología y Minería, pp 386–404

  • Fabre A (1983) La subsidencia de la Cuenca del Cocuy (Cordillera Oriental de Colombia) durante el Cretáceo y el Terciario Inferior. Primera parte: Estudio cuantitativo de la subsidencia. Geol Norandina 8:22–27

    Google Scholar 

  • Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181

    Article  Google Scholar 

  • Gallego J (2015) Natural disasters and clientelism: the case of floods and landslides in Colombia. Serie Documentos De Trabajo 178:1–51

    Google Scholar 

  • García-Delgado H, Machuca S, Medina E (2019a) Dynamic and geomorphic characterisations of the Mocoa debris flow (March 31, 2017, Putumayo Department, southern Colombia). Landslides 16:597–609. https://doi.org/10.1007/s10346-018-01121-3

    Article  Google Scholar 

  • García-Delgado H, Villamizar-Escalante N, Bernet M (2019b) Recent tectonic activity along the Bucaramanga Fault System (Chicamocha River Canyon, Eastern Cordillera of Colombia): a geomorphological approach. Zeitschrift Für Geomorphol 62:199–215. https://doi.org/10.1127/zfg/2019/0630

    Article  Google Scholar 

  • García-Delgado H, Machuca S, Velandia F, Audemard F (2020) Along-strike variations in recent tectonic activity in the Santander Massif: new insights on landscape evolution in the Northern Andes. J South Am Earth Sci 98:102472. https://doi.org/10.1016/j.jsames.2019.102472

    Article  Google Scholar 

  • García-Delgado H, Contreras N (2021) Historical distribution for landslides triggered by earthquakes in the Colombian region. In: Cabrera MA, Prada-Sarmiento LF (eds) Proceedings of the 13th International Symposium on Landslides. ISSMGE, Cartagena, pp 1–8

  • Gómez E, Villarraga M (2013) Recent landslides with economical and human losses in Medellin City (Colombia). In: Margottini C, Canuti P, Sassa K. (eds) Landslide science and practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31337-0_13

  • Gómez D, García-Aristizábal E, Aristizábal E (2021) Spatial and temporal patterns of fatal landslides in Colombia. In: Cabrera MA, Prada-Sarmiento LF, Montero J (eds) Proceedings of the 13th International Symposium on Landslides. ISSMGE, Cartagena, pp 1–8

  • Gómez Tapias J, Montes Ramírez NE, Schobbenhaus C (2019) Mapa Geológico de Suramérica a Escala 1: 5.000. 000. Commission for the Geological Map of the World (CGMW), Colombian Geological Survey, and Geological Survey of Brazil. Paris. https://doi.org/10.32685/10.143.2019.929

  • Görüm T, Fidan S (2021) Spatiotemporal variations of fatal landslides in Turkey. Landslides. https://doi.org/10.1007/s10346-020-01580-7

    Article  Google Scholar 

  • Grima N, Edwards D, Edwards F et al (2020) Landslides in the Andes: forests can provide cost-effective landslide regulation services. Sci Total Environ 745:141128. https://doi.org/10.1016/j.scitotenv.2020.141128

    Article  Google Scholar 

  • Guns M, Vanacker V (2014) Shifts in landslide frequency-area distribution after forest conversion in the tropical Andes. Anthropocene 6:75–85. https://doi.org/10.1016/j.ancene.2014.08.0012213-3054/ß

    Article  Google Scholar 

  • Haque U, Blum P, da Silva PF et al (2016) Fatal landslides in Europe. Landslides 13:1545–1554. https://doi.org/10.1007/s10346-016-0689-3

    Article  Google Scholar 

  • Haque U, da Silva PF, Devoli G et al (2019) The human cost of global warming: deadly landslides and their triggers (1995–2014). Sci Total Environ 682:673–684. https://doi.org/10.1016/j.scitotenv.2019.03.415

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) Data mining, inference, and prediction. In: The elements of statistical learning, 2nd edn. New York: Springer

  • Hermelin M (Ed) (2005) Desastres de origen natural en Colombia 1979–2004. Fondo Editorial EAFIT: 248 pp

  • Hincapié-Gómez S, Cardona A, Jiménez G et al (2018) Paleomagnetic and gravimetrical reconnaissance of Cretaceous volcanic rocks from the Western Colombian Andes: paleogeographic connections with the Caribbean Plate. Stud Geophys Geod 62:485–511. https://doi.org/10.1007/s11200-016-0678-y

    Article  Google Scholar 

  • Holley EA, Smith NM, Delgado Jimenez JA et al (2020) Socio-technical context of the interactions between large-scale and small-scale mining in Marmato. Colombia Resour Policy 67:101696. https://doi.org/10.1016/j.resourpol.2020.101696

    Article  Google Scholar 

  • Hoyos N, Escobar J, Restrepo JC et al (2013) Impact of the 2010–2011 La Niña phenomenon in Colombia, South America: the human toll of an extreme weather event. Appl Geogr 39:16–25. https://doi.org/10.1016/j.apgeog.2012.11.018

    Article  Google Scholar 

  • IDEAM (2017) Guía metodológica para la elaboración de mapas de inundación. Bogotá: 110 pp

  • INGEOMINAS (1996) Inventario de desastres naturales. Oficina Regional Medellín, Geological Survey of Colombia, p 189

    Google Scholar 

  • INGEOMINAS (2002) Catálogo Nacional de Movimientos en Masa. Subdirección de Amenazas Geoambientales, Geological Survey of Colombia, p 289

    Google Scholar 

  • Julivert M (1970) Cover and basement tectonics in the Cordillera Oriental of Colombia, South America, and a comparison with some other folded chains. Geol Soc Am Bull 81:3623–3646. https://doi.org/10.1130/0016-7606(1970)81[3623:CABTIT]2.0.CO;2

    Article  Google Scholar 

  • Kirschbaum DB, Adler R, Hong Y et al (2010) A global landslide catalog for hazard applications: method, results, and limitations. Nat Hazards 52:561–575. https://doi.org/10.1007/s11069-009-9401-4

    Article  Google Scholar 

  • Kirschbaum D, Stanley T, Zhou Y (2015) Spatial and temporal analysis of a global landslide catalog. Geomorphology 249:4–15. https://doi.org/10.1016/j.geomorph.2015.03.016

    Article  Google Scholar 

  • Klimeš J, Escobar VR (2010) A landslide susceptibility assessment in urban areas based on existing data: an example from the Iguaná Valley, Medellín City, Colombia. Nat Hazards Earth Syst Sci 10:2067–2079. https://doi.org/10.5194/nhess-10-2067-2010

    Article  Google Scholar 

  • Larsen MC, Parks JE (1997) How wide is a road? The association of roads and mass-wasting in a forested montane environment. Earth Surf Process Landforms 22:835–848. https://doi.org/10.1002/(SICI)1096-9837(199709)22:9%3c835::AID-ESP782%3e3.0.CO;2-C

    Article  Google Scholar 

  • Lin Q, Wang Y (2018) Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides 15:2357–2372. https://doi.org/10.1007/s10346-018-1037-6

    Article  Google Scholar 

  • López-Rodríguez SR, Blanco-Libreros JF (2008) Illicit crops in tropical America: deforestation, landslides, and the terrestrial carbon stocks. Ambio 37:141–143. https://doi.org/10.1579/0044-7447(2008)37[141:ICITAD]2.0.CO;2

    Article  Google Scholar 

  • Martens U, Restrepo JJ, Ordóñez-Carmona O, Correa-Martínez AM (2014) The Tahamí and Anacona terranes of the Colombian Andes: missing links between the South American and Mexican Gondwana margins. J Geol 122:507–530. https://doi.org/10.1086/677177

    Article  Google Scholar 

  • Maya M, González H (1995) Unidades litodémicas en la Cordillera Central de Colombia. Boletín Geológico 35:43–57

    Article  Google Scholar 

  • McAdoo B, Quak M, Gnyawali K et al (2018) Roads and landslides in Nepal: how development affects risk. Nat Hazards Earth Syst Sci 18:3203–3210. https://doi.org/10.5194/nhess-2017-461

    Article  Google Scholar 

  • Mojica J, Colmenares F, Villarroel C et al (1985) Características del flujo de lodo ocurrido el 13 de noviembre de 1985 en el valle de Armero (Tolima, Colombia). Historia y comentarios de los flujos de 1595 y 1845. Geol Colomb 107–140

  • Montero J, Beltrán L, Cortes R (1988) Inventario de deslizamientos en la red vial colombiana. Ing e Investig 17:15–27

    Google Scholar 

  • Mora A, Gaona T, Kley J et al (2009) The role of inherited extensional fault segmentation and linkage in contractional orogenesis: a reconstruction of lower cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Res 21:111–137. https://doi.org/10.1111/j.1365-2117.2008.00367.x

    Article  Google Scholar 

  • Naranjo-Bedoya K, Aristizábal-Giraldo E, Morales-Rodelo JA (2019) Influencia del ENSO en la variabilidad espacial y temporal de la ocurrencia de movimientos en masa detonados por lluvias en la región Andina colombiana. Ing y Cienc 15:11–42. https://doi.org/10.17230/ingciencia.15.29.1

  • Ojeda J, Donnelly L (2006) Landslides in Colombia and their impact on towns and cities. In: IAEG2006. pp 1–13

  • Paris G, Machette MN, Dart RL, Haller KM (2000) Map and Database of Quaternary faults and folds in Colombia and its offshore regions. USGS Open-File Report 00–0284:1–66

    Google Scholar 

  • Paris G, Romero R (1994) Fallas Activas En Colombia Bol Geol 34:3–26

    Google Scholar 

  • Pennington WD (1981) Subduction of the Eastern Panama Basin and seismotectonics of northwestern South America. J Geophys Res 86:10753–10770

    Article  Google Scholar 

  • Pereira S, Zêzere JL, Quaresma I et al (2016) Mortality patterns of hydro-geomorphologic disasters. Risk Anal 36:1188–1210. https://doi.org/10.1111/risa.12516

    Article  Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40:927–930. https://doi.org/10.1130/G33217.1

    Article  Google Scholar 

  • Petley DN, Dunning SA, Rosser NJ (2005) The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor & Francis Group, London, pp 367–373

    Google Scholar 

  • Petley DN, Hearn GJ, Hart A et al (2007) Trends in landslide occurrence in Nepal. Nat Hazards 43:23–44. https://doi.org/10.1007/s11069-006-9100-3

    Article  Google Scholar 

  • Pierson T (2005) Distinguishing between debris flows and floods from field evidence in small watersheds. US Geological Survey Fact Sheet 2004–3142: 4 pp

  • Polanco C, Bedoya-Sanmiguel G (2005) Compilación y análisis de los desastres naturales reportados en el departamento de Antioquia, exceptuando los municipios del Valle de Aburrá-Colombia, entre 1920–1999. Ing y Cienc 1:45–65

    Google Scholar 

  • Pollock W, Wartman J (2020) Human Vulnerability to Landslides Geohealth 4:1–17. https://doi.org/10.1029/2020GH000287

    Article  Google Scholar 

  • Poveda G, Mesa OJ (1996) Las fases extremas del fenomeno ENSO (El Nino y La Nina) y su influencia sobre la hidrologia de Colombia. Ing Hidraul En Mex 11:21–37

    Google Scholar 

  • Poveda G, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on Earth): enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys Res Lett 27:1675–1678. https://doi.org/10.1029/1999GL006091

    Article  Google Scholar 

  • Poveda G, Jaramillo A, Gil MM et al (2001) Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour Res 37:2169–2178. https://doi.org/10.1029/2000WR900395

    Article  Google Scholar 

  • Poveda G, Álvarez DM, Rueda ÓA (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249. https://doi.org/10.1007/s00382-010-0931-y

    Article  Google Scholar 

  • Pontificia Universidad Javeriana (PUJ) – Servicio Geológico Colombiano (SGC) (2021) Evaluación de amenaza por avenidas torrenciales. Bogotá, Servicio Geológico Colombiano.

  • Ramos-Cañón AM, Prada-Sarmiento LF, Trujillo-Vela MG et al (2016) Linear discriminant analysis to describe the relationship between rainfall and landslides in Bogotá, Colombia. Landslides 13:671–681. https://doi.org/10.1007/s10346-015-0593-2

    Article  Google Scholar 

  • Rettberg A, Ortiz-Riomalo JF (2016) Golden opportunity, or a new twist on the resource-conflict relationship: links between the drug trade and illegal gold mining in Colombia. World Dev 84:82–96. https://doi.org/10.1016/j.worlddev.2016.03.020

    Article  Google Scholar 

  • Ríos DA, Hermelin M (2004) Prediction of landslide occurrence in urban areas located on volcanic ash soils in Pereira, Colombia. Bull Eng Geol Environ 63:77–81. https://doi.org/10.1007/s10064-003-0210-9

    Article  Google Scholar 

  • Salazar-Gutiérrez LF, Menjivar Flores JC, Martínez Carvajal HE (2021) Susceptibility factors of drainage basins to shallow landslides in coffee-growing areas in the Department of Caldas, Colombia. Environ Earth Sci 80:1–12. https://doi.org/10.1007/s12665-021-09428-6

    Article  Google Scholar 

  • Salvati P, Petrucci O, Rossi M et al (2018) Gender, age and circumstances analysis of flood and landslide fatalities in Italy. Sci Total Environ 610–611:867–879. https://doi.org/10.1016/j.scitotenv.2017.08.064

    Article  Google Scholar 

  • Santi PM, Hewitt K, VanDine DF, Cruz EB (2011) Debris-flow impact, vulnerability, and response. Nat Hazards 56:371–402. https://doi.org/10.1007/s11069-010-9576-8

    Article  Google Scholar 

  • Schuster RL, Highland LM (2001) Socioeconomic impacts of landslides in the Western Hemisphere. Open-File Report 01–276. US Geological Survey

  • Sepúlveda SA, Rebolledo S, Vargas G (2006) Recent catastrophic debris flows in Chile: Geological hazard climatic relationships and human response. Quaternary International 158(1) 83-95 https://doi.org/10.1016/j.quaint.2006.05.031

  • Sepúlveda SA, Petley DN (2015) Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Nat Hazards Earth Syst Sci 15:1821–1833. https://doi.org/10.5194/nhess-15-1821-2015

    Article  Google Scholar 

  • Sepulveda SA (2020) Failure mechanisms of large volume rock avalanches in the Andes of Central Chile: a brief discussion. In Proceedings SCG-XIII International Symposium On Landslides. Cartagena, Colombia, paper ISL2020–28

  • SGC (2017) Guía metodológica para la zonificación de amenaza por movimientos en masa escala 1:25.000. Bogotá, Servicio Geológico Colombiano, p 218

    Google Scholar 

  • Siddiqi A, Peters K, Zulver J (2019) ‘Doble afectacion’: living with disasters and conflict in Colombia. London: ODI (https://cdn.odi.org/media/documents/12881.pdf), 36 pp

  • Taboada A, Rivera LA, Fuenzalida A et al (2000) Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia). Tectonics 19:787–813. https://doi.org/10.1029/2000TC900004

    Article  Google Scholar 

  • Tesón E, Mora A, Silva A et al (2013) Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geol Soc London, Spec Publ 377:257–283. https://doi.org/10.1144/SP377.10

    Article  Google Scholar 

  • UNODC (2020) Explotación de oro de aluvión. Evidencias a partir de percepción remota 2019. Colombia: 236 pp

  • Velandia F, Acosta J, Terraza R, Villegas H (2005) The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics 399:313–329. https://doi.org/10.1016/j.tecto.2004.12.028

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Villagómez D, Spikings R, Magna T et al (2011) Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos 125:875–896. https://doi.org/10.1016/j.lithos.2011.05.003

    Article  Google Scholar 

  • Vinasco CJ, Cordani UG, González H et al (2006) Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. J South Am Earth Sci 21:355–371. https://doi.org/10.1016/j.jsames.2006.07.007

    Article  Google Scholar 

  • Vinasco C (2019) The Romeral shear zone. In: Cediel F, Shaw R (eds) Geology and tectonics of northwestern South America. Front Earth Sci 833–876

  • Webster PJ (1995) The annual cycle and the predictability of the tropical coupled ocean-atmosphere system. Meteorol Atmos Phys 56:33–55

    Article  Google Scholar 

Download references

Acknowledgements

HGD thanks Jorge Chaparro and Carlos Gamboa for their support in the construction and cross-checking of the catalogue presented in this paper. The supplementary material can be accessed at https://doi.org/10.17632/xbrc8gvby9.1. The scientific content of this contribution improved notably thanks to the comments by Robert Emberson, an anonymous reviewer and the handling editor.

Funding

Financial support was provided by Universidad Pedagógica y Tecnológica de Colombia (UPTC), DIN SGI Project 3104.

Author information

Authors and Affiliations

Authors

Contributions

HGD: data compilation, analysis, visualisation, writing — original draft preparation; MAB: statistical analysis, review and editing; DP, SS: methodology, review and editing.

Corresponding author

Correspondence to Helbert Garcia-Delgado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2327 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garcia-Delgado, H., Petley, D.N., Bermúdez, M.A. et al. Fatal landslides in Colombia (from historical times to 2020) and their socio-economic impacts . Landslides 19, 1689–1716 (2022). https://doi.org/10.1007/s10346-022-01870-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-022-01870-2

Keywords

  • Landslide
  • Debris flow
  • Socio-economic indexes
  • Colombia
  • ENSO