An active large rock slide in the Andean paraglacial environment: the Yerba Loca landslide, central Chile

Abstract

A ca. 2.5 million m3 landslide occurred in August 2018 in the Yerba Loca valley, Andes Main Cordillera (33° 15′ S), at about 4000 m a.s.l. The Yerba Loca landslide is a multirotational slide, with a main scarp and failure surface developed in a volcanic rock mass, with secondary scarps and tilted blocks disturbing the colluvial soil cover. No clear trigger could be identified, although the failure took place some weeks after the largest winter precipitation and a sequence of snowfall and snowmelt, in the context of a severe drought. Inspection of optical satellite images suggests that the landslide suffered slow deformation for at least 15 years, increasing in the months prior to the failure. To corroborate these precursor deformations, InSAR analyses were performed at two time and spatial scales. For over 3 years, deformation in the landslide area was detected, while the local, short-term analysis from the 7 months before failure shows line-of-sight deformation rates at the landslide site of over 10 cm/year. Deformation continues after the failure with decreasing speed, with indications of further activity and expansion of the failure zone. This implies a hazard of rock avalanche, debris flows and/or river damming and subsequent outburst floods that may endanger communities downstream. The Yerba Loca landslide is an example of rock slope failure in paraglacial conditions and the influence of climatic factors in the context of climate change for the central Andes. This event represents an opportunity for learning on landslide mechanisms, remote sensing monitoring and hazard assessment of slow, large volume landslides in the Andean highlands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

 Satellite imagery data for this paper come from open sources.

References

  1. Alvarado P, Barrientos S, Saez M, Astroza M, Beck S (2009) Source study and tectonic implications of the historic 1958 Las Melosas crustal earthquake, Chile, compared to earthquake damage. Phys Earth Planet Inter 175:26–36

    Article  Google Scholar 

  2. Antinao JL, Gosse J (2009) Large rockslides in the Southern Central Andes of Chile (32–34.5 S): tectonic control and significance for Quaternary landscape evolution. Geomorphology 104(3-4):117–133

    Article  Google Scholar 

  3. Armijo R, Rauld R, Thiele R, Vargas G, Campos J, Lacassin R, Kausel E (2010) The West Andean Thrust, the San Ramón Fault, and the seismic hazard for Santiago, Chile. Tectonics 29:TC2007. https://doi.org/10.1029/2008TC002427

    Article  Google Scholar 

  4. Baranzagi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca Plate beneath South America. Geology 4:686–692

    Article  Google Scholar 

  5. Barrientos S, National Seismological Center (CSN) Team (2018) The seismic network of Chile. Seismol Res Lett 89(2A):467–474

    Article  Google Scholar 

  6. Barrientos S, Vera E, Alvarado P, Monfret T (2004) Crustal seismicity in central Chile. J S Am Earth Sci 16(8):759–768

    Article  Google Scholar 

  7. Bayer B, Simonia A, Mulas M, Corsini A, Schmidt D (2018) Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR. Geomorphology 308:293–306

    Article  Google Scholar 

  8. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for Surface deformation monitoring based on small baseline differential SAR interferograms. Geosci Remote Sens IEEE Trans 40(11):2375–2383

    Article  Google Scholar 

  9. Bovenga F, Pasquariello G, Pellicani R, Refice A, Spilotro G (2017) Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: the large landslide of Carlantino (Italy). CATENA 151:49–62

    Article  Google Scholar 

  10. Bürgmann R, Rosen P, Fielding E (2000) Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28(1):169–209. https://doi.org/10.1146/annurev.earth.28.1.169

    Article  Google Scholar 

  11. Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca Plate. J Geophys Res 97(B12):17503–17529

    Article  Google Scholar 

  12. Carlà T, Intrieri E, Raspini F, Bardi F, Farina P, Ferretti A, Colombo D, Novali F, Casagli N (2019) Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci Rep 9(1):1–9

    Article  Google Scholar 

  13. Carrasco J, Osorio R, Casassa G (2008) Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J Glaciol 57(186):538–550

    Article  Google Scholar 

  14. Cartes M (2009) Pronóstico de volúmenes de deshielos mediante redes neuronales recurrentes e imágenes satelitales Modis. MSc Thesis, Universidad de Chile

  15. Charrier R, Bustamante M, Comte D, Elgueta S, Flynn JJ, Iturra N, Muñoz N, Pardo M, Thiele R, Wyss AR (2005) The Abanico Extensional Basin: regional extension, chronology of tectonic inversion, and relation to shallow seismic activity and Andean uplift. Neues Jahrb Geol Palaeontol Abh 236:43–47

    Article  Google Scholar 

  16. Comte M (2017) Modelación hidrológica de la cuenca del río Mapocho en Los Almendros, usando el modelo Cold Regions Hydrological Model. Dissertation, Universidad de Chile

  17. Conaf - Corporación Nacional Forestal (1984) Geología del Santuario de la Naturaleza Yerba Loca. Las Condes. Región Metropolitana. Corporación Nacional Forestal, Santiago

    Google Scholar 

  18. Cossart E, Braucher R, Fort M, Bourlés DL, Carcaillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 95:3–26

    Article  Google Scholar 

  19. Cossart E, Mercier D, Daculne A, Feuillet T, Jonsson HP, Saedmindsson B (2014) Impacts of post-glacial rebound on landslide spatial distribution at a regional scale in northern Iceland (Skagafjördur). Earth Surf Process Landsf 39:336–350

    Article  Google Scholar 

  20. Davies MCR, Hamza O, Harris C (2001) The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities. Permafr Periglac Process 12:137–144

    Article  Google Scholar 

  21. Deckart K, Pinochet K, Sepúlveda SA, Pinto L, Moreiras SM (2014) New insights on the origin of the Mesón Alto deposit, Yeso Valley, central Chile: a composite deposit of glacial and landslide processes? Andean Geol 41(1):248–258

    Google Scholar 

  22. Deline P (2009) Interactions between rock avalanches and glaciers in the Mont Blanc massif during the late Holocene. Quat Sci Rev 28(11–12):1070–1083

    Article  Google Scholar 

  23. Eckerman L, Agüero A, Spagnotto S, Martínez P, Nacif S (2018) Seismic-gravimetric analysis of the subducted Nazca plate 1 between32°S and 36°S. Geodesy Geodyn 9:57–66. https://doi.org/10.1016/j.geog.2017.08.002

    Article  Google Scholar 

  24. Falvey M, Garreaud R (2007) Winter precipitation episodes in central Chile: associated with meteorological conditions and orographic influences. J Hydrometeorol 8:171–193

    Article  Google Scholar 

  25. Farías M, Comte D, Charrier R, Martinod J, David C, Tassara A, Tapia F, Fock A (2010) Crustal-scale structural architecture in central Chile based on seismicity and surface geology: implications for Andean mountain building. Tectonics 29(3):TC3006

    Article  Google Scholar 

  26. Fock A (2005) Cronología y tectónica de la exhumación en el Neógeno de los Andes de Chile central entre los 33° y los 34°S. M.Sc. Thesis, Universidad de Chile

  27. Garcés M (2020) Aplicación de interferometría de radar de apertura sintética (InSAR) y análisis de series de tiempo SBAS, para tres casos de estudio en Chile central. Dissertation, Universidad de Chile

  28. Garreaud R (2013) Warm winter storms in Central Chile. J Hydrometeorol 14:1515–1534

    Article  Google Scholar 

  29. Garreaud R, Alvarez-Garreton C, Barichivich J, Boisier JP, Christie D, Galleguillos M, LeQuesne C, McPhee J, Zambrano-Bigiarini M (2017) The 2010–2015 mega drought in central Chile: impacts on regional hydroclimate and vegetation. Hydrol Earth Syst Sci Discuss 2017:1–37

  30. Garreaud R, Rutllant J (1996) Análisis meteorológico de los aluviones de Antofagasta y Santiago de Chile en el periodo 1991–1993. Atmósfera 9:251–271

    Google Scholar 

  31. Grämiger LM, Moore JR, Gischig VS, Ivy-Ochs S, Loew S (2017a) Beyond debuttressing: Thermo-hydro-mechanical rock slope damage during glacial cycles. Prog Rock Fail Conf Monte Verità 10 M-06:141–143

    Google Scholar 

  32. Grämiger LM, Moore JR, Gischig VS, Ivy-Ochs S, Loew S (2017b) Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles. J Geophys Res Earth Surf 122:1004–1036. https://doi.org/10.1002/2016JF003967

    Article  Google Scholar 

  33. Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature related destabilization following climate change. J Geophys Res 112:F02S18. https://doi.org/10.1029/2006JF000547

    Article  Google Scholar 

  34. Hauser A (2002) Rock avalanche and resulting debris flow in Estero Parraguirre and Río Colorado, Región Metropolitana, Chile. In: Evans SG, Degraff JV (eds) Catastrophic landslides: Effects, occurrence, and mechanisms, vol 15. Reviews in Engineering Geology, pp 135–148

  35. IPCC (2019) Technical summary. In: Pörtner HO, Roberts DC, Masson- Delmotte V et al. (eds.) IPCC special report on the ocean and cryosphere in a changing climate. http://www.ipcc.ch/srocc/chapter/technical-summary/. Accessed May 2020

  36. Llambías EJ, Quenardelle S, Montenegro T (2003) The Choiyoi Group from central Argentina: a subalkaline transitional to alkaline association in the craton adjacent to the active margin of the Gondwana continent. J S Am Earth Sci 16(4):243–257

    Article  Google Scholar 

  37. Matsuoka N, Murton J (2008) Frost weathering: recent advances and future directions. Permafr Periglac Process 19:195–210

    Article  Google Scholar 

  38. McColl ST (2012) Paraglacial rock-slope stability. Geomorphology 153-154:1–16

    Article  Google Scholar 

  39. McSaveney MJ (2002) Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand. In: Evans SG, Degraff JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms, vol 15. Reviews in Engineering Geology, pp 35–70

  40. Meteorological Direction of Chile (2018) Anuario Climatológico. Dirección General De Aeronáutica Civil, Santiago

    Google Scholar 

  41. Meteorological Direction of Chile (2019) Reporte climático año 2019. Dirección General De Aeronáutica Civil, Santiago

    Google Scholar 

  42. Monnier S, Kinnard C (2015) Reconsidering the glacier to rock glacier transformation problem: new insights from the Central Andes of Chile. Geomorphology 238:47–55

    Article  Google Scholar 

  43. Moreiras SM, Sepúlveda SA (2015) Megalandslides in the Andes of central Chile and Argentina (32°–34° S) and potential hazards. In: Sepúlveda SA, Giambiagi L et al. (eds) Geological Society of London, Special Publications 399, pp 329–344.

  44. Mpodozis C, Ramos VA (1989) The Andes of Chile and Argentina, In: Eriksen GE, Cañas MT, Reintmund JA (eds). Geology of the Andes and its relation to hydrocarbon and energy resources; Circum-Pacific Council for Energy and Hydrothermal Resources, Earth Sciences Series, Houston, Texas, vol. 11, pp 59–90

  45. Rutllant J, Fuenzalida H (1991) Synoptic aspects of the central Chile rainfall variability associated with the southern oscillation. Int J Climatol 11:63–76

    Article  Google Scholar 

  46. Sandwell D, Mellors R, Tong X, Wei M, Wessel P (2011) Open radar interferometry software for mapping surface deformation. Eos Trans AGU 92(28). https://doi.org/10.1029/2011EO280002

  47. Schulz WH, Coe JK, Ricci PP, Smoczyk GM, Shurtleff BL, Panosky J (2017) Landslide kinematics and their potential controls from hourly to decadal timescales: insights from integrating ground-based InSAR measurements with structural maps and long-term monitoring data. Geomorphology 285:121–136

    Article  Google Scholar 

  48. Sepúlveda SA, Astroza M, Kausel E, Campos J, Casas EA, Rebolledo S, Verdugo R (2008) New findings on the 1958 Las Melosas earthquake sequence, Central Chile: Implications for seismic hazard related to shallow crustal earthquakes in Subduction Zones. J Earthq Eng 12:432–455

    Article  Google Scholar 

  49. Sepúlveda SA, Moreiras SM, Lara M, Alfaro A (2014) Debris flows in the Andean ranges of central Chile and Argentina triggered by 2013 summer storms: characteristics and consequences. Landslides 12:115–133

    Article  Google Scholar 

  50. Sepúlveda SA, Padilla C (2008) Rain-induced debris and mud flow triggering factors assessment in the Santiago Cordilleran foothills, Central Chile. Nat Hazards 47:201–215

    Article  Google Scholar 

  51. Serey A, Piñero-Feliciangeli L, Sepúlveda SA, Poblete F, Petley DN, Murphy W (2019) Landslides induced by the 2010 Chile megathrust earthquake: a comprehensive inventory and correlations with geological and seismic factors. Landslides 16(6):1153–1165

    Article  Google Scholar 

  52. Serey A, Sepúlveda SA, Murphy W, Petley DN, De Pascale G (2020) Developing conceptual models for the recognition of coseismic landslides hazard for shallow crustal and megathrust earthquakes in different mountain environments – an example from the Chilean Andes. Q J Eng Geol Hydrogeol. https://doi.org/10.1144/qjegh2020-023

    Article  Google Scholar 

  53. Sernageomin - Servicio Nacional de Geología y Minería (2019) Remoción en masa en Santuario de la Naturaleza Yerba Loca. Servicio Nacional de Geología y Minería, INF-2019. METROPOLITANA-01, Santiago

  54. Thiele R (1980) Geología de la Hoja Santiago, Región Metropolitana. Carta Geológica de Chile No 39. Instituto de Investigaciones Geológicas, Santiago

    Google Scholar 

  55. Valenzuela L, Varela J (1991) El Alfalfal rock fall and debris flow in Chilean Andes Mountains. Proceedings, Panamerican Conference on Soil Mechanics and Foundation Engineering, Viña del Mar, Chile. 1(9):357–371

  56. Villalba R (1994) Fluctuaciones climáticas en latitudes medias de América del Sur durante los últimos 1000 años: sus relaciones con la Oscilación Sur. Rev Chil Hist Nat 67:453–461

    Google Scholar 

  57. Wall R, Sellés D, Gana P (1999) Mapa Geológico del Área Til-Til-Santiago. Serv Nac Geol Miner Mapas Geol 11:17 Santiago

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the University of O’Higgins and FONDECYT project 1201360, in collaboration with the Chilean Geological Survey (Sernageomin). We specially thank Leonardo Espinoza (Sernageomin) for his valuable knowledge on the study area, Oriol Monserrat (Centre Tecnològic de Telecomunicacions de Catalunya) for providing support on the Sentinel-1 SAR data processing and Sebastián Galaz (U. de Chile) who contributed with a geological background review.

Code availability

Not applicable.

Funding

 This research has been funded by the University of O’Higgins, FONDECYT project 1201360, in collaboration with the Chilean Geological Survey (Sernageomin).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergio A. Sepúlveda.

Ethics declarations

Conflict of interest

Not applicable

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sepúlveda, S.A., Alfaro, A., Lara, M. et al. An active large rock slide in the Andean paraglacial environment: the Yerba Loca landslide, central Chile. Landslides 18, 697–705 (2021). https://doi.org/10.1007/s10346-020-01564-7

Download citation

Keywords

  • Landslides
  • Paraglacial slopes
  • InSAR
  • Geohazards
  • Chile