Geomorphological and geophysical surveys with InSAR analysis applied to the Picerno earth flow (southern Apennines, Italy)

Abstract

Landslides represent a major geomorphological feature influencing the evolution of the southern Apennine slopes with earth flows being one of the most representative types of landslide. The development of earth flows in the southern Apennines is facilitated by the widespread occurrence of clayey lithologies. Earth flows can either produce marked scars along the slopes, when their activity is high, or give rise to bumpy areas that are frequently covered by vegetation, when their activity is low. In this latter case, although the risk is significantly reduced, the earth flow can still represent a problem for buildings and infrastructure. The Picerno earth flow in the Basilicata region is an example of a low-activity earth flow. This NW-SE–oriented landslide extends for a length of ~ 5.5 km, has an average width of ~ 680 m, and affects the village of Picerno. Our investigations mainly focused on the terminal portion of the landslide and revealed that some significant linear infrastructures (e.g., the Potenza–Naples railway) and important provincial and municipal roads are affected by the earth flow. In order to better define the amount of displacement characterizing the Picerno earth flow and gain insights into the lateral extension and the depth of the main detachment surface, we undertook a detailed geological and geomorphological survey. Interferometry synthetic aperture radar data provided by the processing of SAR images, with the aim of highlighting the regions of the landslide that are currently active, together with electrical resistivity tomography data which have been utilized to define the geometry of the landslide body. Our results provide useful suggestions for planning appropriate actions aimed at stabilizing the landslide body.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bellanova J, Calamita G, Giocoli A, Luongo R, Macchiato M, Perrone A, Uhlemann S, Piscitelli S (2018) Electrical resistivity imaging for the characterization of the Montaguto landslide (Southern Italy). Eng Geol 243:272–281. https://doi.org/10.1016/j.enggeo.2018.07.014

    Article  Google Scholar 

  2. Bentivenga M, Coltorti M, Prosser G, Tavarnelli E (2004a) Recent extensional faulting in the Gulf of Taranto area: implications for nuclear waste storage in the vicinity of Scanzano Ionico (Basilicata). Boll Soc Geol It 123:391–404

    Google Scholar 

  3. Bentivenga M, Coltorti M, Prosser G, Tavarnelli E (2004b) A new interpretation of terraces in the Taranto gulf: the role of extensional faulting. Geomorphology 60:383–402

    Article  Google Scholar 

  4. Bentivenga M, Palladino G, Caputi A (2012) Development of the Pietra Maura landslide and interactions with the Marsico Nuovo dam (Basilicata - Italy). Geografia Fisica e Dinamica del Quaternario 35:13–22. https://doi.org/10.4461/GFDQ.2012.35.2

    Article  Google Scholar 

  5. Bentivenga M, Giocoli A, Palladino G, Perrone A, Piscitelli S (2019) Geological and geophysical characterization of the Brindisi di Montagna Scalo landslide (Basilicata, Southern Italy). Geomatics Nat Hazards Risk 10:1367–1388. https://doi.org/10.1080/19475705.2019.1575291

    Article  Google Scholar 

  6. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383

    Article  Google Scholar 

  7. Blanco-Sànchez P, Mallorquí JJ, Duque S, Monells D (2008) The coherent pixels technique (CPT): an advanced Din-SAR technique for nonlinear deformation monitoring. In: Earth sciences and mathematics. Basel, Birkhäuser, pp 1167–1193. https://doi.org/10.1007/978-3-7643-8907-9_10

    Google Scholar 

  8. Booth AM, Lamb MP, Avouac JP, Delacourt C (2013) Landslide velocity, thickness, and rheology from remote sensing: La Clapière landslide, France. Geophys Res Lett 40:4299–4304. https://doi.org/10.1002/grl.50828

    Article  Google Scholar 

  9. Carbone S, Catalano S, Lentini F, Monaco C (1988) Le unità stratigrafico strutturali dell’Alta Val d’Agri (Appennino Lucano) nel quadro dell’evoluzione del sistema Catena-Avanfossa. Mem Soc Geol It 41:331–341

    Google Scholar 

  10. Casu F, Manzo M, Lanari R (2006) A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens Environ 102(3–4):195–210

    Article  Google Scholar 

  11. Cavalcante F, Fiore S, Piccarreta G, Tateo F (2003) Geochemical and mineralogical approaches to assessing provenance and deposition of shales: a case study. Clay Miner 38:383–397

    Article  Google Scholar 

  12. Cavalcante F, Belviso C, Bentivenga M, Fiore S, Prosser G (2011) Occurrence of palygorskite and sepiolite in upper Paleocene–middle Eocene marine deep sediments of the Lagonegro basin (southern Apennines–Italy): paleoenvironmental and provenance inferences. Sediment Geol 233:42–52. https://doi.org/10.1016/j.sedgeo.2010.10.007

    Article  Google Scholar 

  13. Chambers JE, Wilkinson PB, Kuras O, Ford JR, Gunn DA, Meldrum PI, Pennington CVL, Weller AL, Hobbs PRN, Ogilvy RD (2011) Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 125:472–484

    Article  Google Scholar 

  14. Cheng Q, Tao M, Chen X, Binley A (2019) Evaluation of electrical resistivity tomography (ERT) for mapping the soil–rock interface in karstic environments. Environ Earth Sci 78:439. https://doi.org/10.1007/s12665-019-8440-8

    Article  Google Scholar 

  15. Cigna F, Bianchini S, Casagli N (2012) How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): the PSI-based matrix approach. Landslides 10:267–283

    Article  Google Scholar 

  16. Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sensing 36(3):813–821. https://doi.org/10.1109/36.673674

    Article  Google Scholar 

  17. Cruden DM, Varnes DJ (1996) Landslide types and processes, In: Turner, A.K., Schuster, R.L. (Eds.), Landslides, investigation and mitigation, Special Report 247. Transportation Research Board, Washington D.C., pp. 36–75. ISSN: 0360-859X ISBN: 030906208X

  18. Derauw D, Orban A. (2004) Baseline combination for InSAR dem atimetric resolution enhancement. Proceedings of the FRINGE 2003 Workshop (ESA SP-550)

  19. Di Martire D, Novellino A, Ramondini M, Calcaterra D (2016) A-differential synthetic aperture radar interferometry analysis of a deep seated gravitational slope deformation occurring at Bisaccia (Italy). Sci Total Environ 550:556–573. https://doi.org/10.1016/J.SCITOTENV.2016.01.102

    Article  Google Scholar 

  20. Doglioni C, Harabaglia P, Martinelli G, Mongelli F, Zito G (1996) A geodynamic model of the southern Apennines. Terra Nova 8:540–547

    Article  Google Scholar 

  21. Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38(5):2202–2212

    Article  Google Scholar 

  22. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  23. Finetti IR, Lentini F, Carbone S, Del Ben A, Di Stefano A, Forlin E, Guarnieri P, Pipan M, Prizzon A (2005) Geological outline of Sicily and lithospheric tectonodynamics of its Tyrrhenian margin from new CROP seismic data. In: Finetti IR (Ed.), CROP PROJECT: deep seismic exploration of the central Mediterranean and Italy. Elsevier

  24. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res 94(B7):9183. https://doi.org/10.1029/JB094iB07p09183

    Article  Google Scholar 

  25. Giano SI, Lapenna V, Piscitelli S, Schiattarella M (2000) Electrical imaging and self-potential surveys to study the geological setting of the Quaternary slope deposits in the Agri High Valley (Southern Italy). Ann Geofis 43:409–419

    Google Scholar 

  26. Giocoli A, Stabile TA, Adurno I, Perrone A, Gallipoli MR, Gueguen E, Norelli E, Piscitelli S (2015) Geological and geophysical characterization of the southeastern side of the High Agri Valley (southern Apennines, Italy). Nat Hazards Earth Syst 15:315–323. https://doi.org/10.5194/nhess-15-315-2015

    Article  Google Scholar 

  27. Goldstein RM, Werner CL (1998) Radar interferogram phase filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038

    Article  Google Scholar 

  28. Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modelling in areas of complex geology. J Appl Geophys 29:211–226

    Article  Google Scholar 

  29. Gueguen E, Doglioni C, Fernandez M (1998) On the post-25 Ma geodynamic evolution of the western Mediterranean. Tectonophysics. 298:259–269

    Article  Google Scholar 

  30. Gueguen E, Bentivenga M, Colaiacovo R, Margiotta S, Summa V, Adurno I (2015) The Verdesca landslide in the Agri Valley (Basilicata, Southern Italy): a new geological and geomorphological framework.

  31. Gullà G, Peduto D, Borrelli L, Antronico L, Fornaro G (2017) Geometric and kinematic characterization of landslides affecting urban areas: the Lungro case study (Calabria, Southern Italy). Landslides 14:171–188. https://doi.org/10.1007/s10346-015-0676-0

    Article  Google Scholar 

  32. Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bull Soc Geol Fr 178(2):101–112. https://doi.org/10.2113/gssgfbull.178.2.101

    Article  Google Scholar 

  33. Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Rizzo E, Sdao F (2003) High-resolution geoelectrical tomographies in the study of the Giarrossa landslide (Potenza, Basilicata). Bull Eng Geol Environ 62:259–268

    Article  Google Scholar 

  34. Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Rizzo E, Sdao F (2005) 2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, Southern Italy. Geophysics 70(3):B11–B18

    Article  Google Scholar 

  35. Lazzari M, Gioia D, Anzidei B (2018) Landslide inventory of the Basilicata region (Southern Italy). Journal of Maps 14(2):348–356. https://doi.org/10.1080/17445647.2018.1475309

    Article  Google Scholar 

  36. Lebourg T, Binet S, Tric E, Jomard H, El Bedoui S (2005) Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep-seated landslide. Terra Nova 17:399–406. https://doi.org/10.1111/j.1365-3121.2005.00623.x

    Article  Google Scholar 

  37. Lentini F, Carbone S, Di Stefano A, Guarnieri P (2002) Stratigraphical and structural constraints in the Lucanian Appennines (Southern Italy): tools for reconstructing the geological evolution. J Geodyn 34:141–158

    Article  Google Scholar 

  38. Loke MH (2004) Tutorial: 2-D and 3-D electrical imaging surveys, Geotomo Software, Malaysia Available at: http://www.geotomosoft.com

  39. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  40. Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156. https://doi.org/10.1016/j.jappgeo.2013.02.017

    Article  Google Scholar 

  41. Martorana R, Capizzi P, D’Alessandro A, Luzio D (2015). Influence of different array datasets on reliability of electrical resistivity tomography. Proceedings of the XXXIV GNGTS, 17-19 November, Trieste (Italy)

  42. Mauritsch HJ, Seiberl W, Arndt R, Romer A, Schneiderbauer K, Sendlhofer GP (2000) Geophysical investigations of large landslides in the Carnic region of southern. Austria–Eng Geol. 56:373–388

    Article  Google Scholar 

  43. Menardi Noguera A, Rea G (2000) Deep structure of the Campanian-Lucanian arc (southern Apennine, Italy). Tectonophysics. 324:239–265

    Article  Google Scholar 

  44. Mora O, Mallorqui JJ, Broquetas A (2003) Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens 41(10):2243–2253. https://doi.org/10.1109/TGRS.2003.814657

    Article  Google Scholar 

  45. Mostardini F, Merlini S (1986) Appennino centro-meridionale. Sezioni geologiche e proposta di modello strutturale. Mem Soc Geol Ital 35:177–202 (in Italian)

    Google Scholar 

  46. Naudet V, Lazzari M, Perrone A, Loperte A, Piscitelli S, Lapenna V (2008) Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, Southern Italy). Eng Geol 98:156–167

    Article  Google Scholar 

  47. Noviello C, Verde S, Zamparelli V, Fornaro G, Pauciullo A, Reale D, Nicodemo G, Ferlisi S, Gullà G, Peduto D (2020) Monitoring buildings at landslide risk with SAR: a methodology based on the use of multipass interferometric data. IEEE Geoscience and Remote Sensing Magazine 8(1):91–119. https://doi.org/10.1109/MGRS.2019.2963140

    Article  Google Scholar 

  48. Patacca E (2007) Stratigraphic constraints on the CROP-04 seismic line interpretation: San Fele 1, Monte Foi 1 and San Gregorio Magno 1 wells (southern Apennines, Italy). In: Mazzotti A, Patacca E, Scandone P (Eds.), Results of the CROP project sub-project CROP-04 southern Apennines (Italy). Boll. Soc. Geol. Ital. Special issue 7, 185–239

  49. Patacca E, Scandone P (2001) Late thrust propagation and sedimentary response in the thrust-belt-foredeep system of the southern Apennines (Pliocene-Pleistocene). In: Vai GB, Martini IP (Eds.), Anatomy of an Orogen: the Apennines and the adjacent Mediterranean Basins. Kluwer Academic Publishers, 401-440

  50. Patacca E, Scandone P (2007) Geology of the southern Apennines. In: Mazzotti, A, Patacca E, Scandone P (Eds), Results of the CROP project sub-project CROP-04 southern Apennines (Italy). Boll. Soc. Geol. Ital. Special issue 7, 75–119

  51. Pazzi V, Morelli S, Fanti R (2019) A review of the advantages and limitations of geophysical investigations in landslide studies. Int J Geophysics 2019:27

    Article  Google Scholar 

  52. Perrone A, Iannuzzi A, Lapenna V, Lorenzo P, Piscitelli S, Rizzo E, Sdao F (2004) High-resolution electrical imaging of the Varco d’Izzo earthflow (Southern Italy). J Appl Geophys 56:17–29

    Article  Google Scholar 

  53. Perrone A, Zeni G, Piscitelli S, Pepe A, Loperte A, Lapenna V, Lanari R (2006) Joint analysis of SAR interferometry and electrical resistivity tomography surveys for investigating ground deformation: the case-study of Satriano di Lucania (Potenza, Italy). Eng Geol 88:260–273

    Article  Google Scholar 

  54. Perrone A, Lapenna V, Piscitelli S (2014) Electrical resistivity tomography technique for landslide investigation: a review. Earth Sci Rev 135:65–82. https://doi.org/10.1016/j.earscirev.2014.04.002

    Article  Google Scholar 

  55. Pescatore T, Sgrosso I, Torre M (1970) Lineamenti di tettonica e sedimentazione nel Miocene dell’Appennino campano-lucano. Boll Soc Nat Napoli 78:337–408

    Google Scholar 

  56. Prati C, Rocca F, Guarnieri AM, Damonti E (1990) Seismic migration for SAR focusing: interferometrical applications. IEEE Trans Geosci Remote Sens 28(4):627–640

    Article  Google Scholar 

  57. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  58. Roering JJ, Kirchner JW, Dietrich WE (2005) Characterizing structural and lithologic controls on deep-seated landsliding: implications for topographic relief and landscape evolution in the Oregon Coast Range. USA Geol Soc Amer Bull 117(5/6):654–668

    Article  Google Scholar 

  59. Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys Prospect 40:453–463

    Article  Google Scholar 

  60. Scandone P (1967) Studi di geologia lucana: la serie calcareo-silico-marnosa e i suoi rapporti con l’Appennino calcareo. Boll Soc Nat Napoli 76:301–469

    Google Scholar 

  61. Scandone P (1972) Studi di geologia lucana: Carta dei terreni della serie calcareo-silico-marnosa e note illustrative. Boll Soc Nat Napoli 81:225–299

    Google Scholar 

  62. Schiattarella M, De Leo P, Beneduce P, Giano IS (2003) Quaternary uplift vs tectonic loading: a case study from the Lucanian Apennine, Southern Italy. Quat Int 101-102:239.251

    Article  Google Scholar 

  63. Schmutz M, Albouy Y, Guérin R, Maquaire O, Vassal J, Schott JJ, Descloîtres M (2000) Joint electrical and time domain electromagnetism (TDEM) data inversion applied to the Super Sauze earthflow (France). Surv Geophys 21:371–390

    Article  Google Scholar 

  64. Small D, Schubert A 2008. Guide to ASAR geocoding, RSL-ASAR-GC-AD, Issue 1.0

  65. Trigila A, Frattini P, Casagli N, Catani F, Crosta GB, Esposito C, Iadanza C, Lagomarsino D, Scarascia Mugnozza G, Segoni S, Spizzichino D, Tofani V, Lari S (2013) Landslide science and practice, volume 1: landslide inventory and susceptibility and hazard zoning. Springer, Berlin Heidelberg, pp 287–295. https://doi.org/10.1007/978-3-642-31325-7_38

    Google Scholar 

  66. Uhlemann S, Chambers J, Wilkinson P, Maurer H, Merritt A, Meldrum P, Kuras O, Gunn D, Smith A, Dijkstra T (2017) Four-dimensional imaging of moisture dynamics during landslide reactivation. J Geophys Res Earth Surf 122:398–418. https://doi.org/10.1002/2016JF003983

    Article  Google Scholar 

  67. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (Eds.), Landslides, analysis and control. Transportation Research Board Sp. Rep. No. 176, Natural Academy of Sciences, 11-33

  68. Zhou B. (2018). Electrical resistivity tomography: a subsurface-imaging technique. Applied geophysics with case studies on environmental, exploration and engineering geophysics, IntechOpen Book, Edited by Ali Ismet Kanlı

Download references

Acknowledgments

We are very grateful to two anonymous reviewers and the Editor Prof. Gianvito Scaringi for the constructive comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mario Bentivenga.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bentivenga, M., Bellanova, J., Calamita, G. et al. Geomorphological and geophysical surveys with InSAR analysis applied to the Picerno earth flow (southern Apennines, Italy). Landslides (2020). https://doi.org/10.1007/s10346-020-01499-z

Download citation

Keywords

  • Landslide
  • InSAR
  • Electrical resistivity tomography
  • Picerno earth flow
  • Southern Italy