Skip to main content

Influence of the mapping unit for regional landslide early warning systems: comparison between pixels and polygons in Catalonia (NE Spain)

Abstract

This work presents a prototype landslide early warning system (LEWS) adapted to real-time performance over the region of Catalonia (NE Spain). The system uses high-resolution rainfall information obtained from weather radar observations and susceptibility maps to issue a qualitative warning level at a regional scale. To study the influence of the mapping unit on the LEWS outputs, susceptibility maps obtained for Catalonia based on (i) pixels of different sizes and (ii) hydrological subbasins have been compared. The susceptibility has been derived using a simple fuzzy logic approach combining slope angle and land cover data. The susceptibility maps for the different mapping units have then been employed to run the LEWS for a period of 7 months (warm season of 2010). For each configuration, the performance, interpretability of the warnings, and computational requirements have been compared to assess the suitability of each mapping unit for their use in the LEWS in real time. The configuration using pixels of 30-m resolution as mapping units seems to be the best as a compromise between resolution, performance, and computational cost. However, from an end-user’s real-time perspective, the interpretation of the warnings can be difficult. Therefore, summarizing and visualizing the warnings, which are computed over the high-resolution grid, by subbasins is proposed as the best option.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Abancó C, Hürlimann M, Moya J, Berenguer M (2016) Critical rainfall conditions for the initiation of torrential flows. Results from the Rebaixader catchment (Central Pyrenees). J Hydrol 541:218–229. https://doi.org/10.1016/j.jhydrol.2016.01.019

    Article  Google Scholar 

  2. Alcántara-Ayala I, Murray V, Daniels P, McBean G (2017) International Council for Science (ICSU)-on the future challanges for the integration of science into international policy developement for landlide disaster risk reduction. Adv Cult Living Landslides 5:1–557. https://doi.org/10.1007/978-3-319-53483-1

    Article  Google Scholar 

  3. Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265

    Article  Google Scholar 

  4. Alfieri L, Salamon P, Pappenberger F, Wetterhall F, Thielen J (2012) Operational early warning systems for water-related hazards in Europe. Environ Sci Pol 21:35–49. https://doi.org/10.1016/j.envsci.2012.01.008

    Article  Google Scholar 

  5. Baum RL, Godt JW (2010) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 7:259–272. https://doi.org/10.1007/s10346-009-0177-0

    Article  Google Scholar 

  6. Berastegui X, Casas JM, Liesa M, Losantos M, Martínez A, Muñoz JA, Roca E (2010) Històtria geològica de Catalunya. Atles geològic de Catalunya:68–77

  7. Berenguer M, Sempere-Torres D, Pegram GGS (2011) SBMcast - an ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. J Hydrol 404:226–240. https://doi.org/10.1016/j.jhydrol.2011.04.033

    Article  Google Scholar 

  8. Berenguer M, Sempere-Torres D, Hürlimann M (2015) Debris-flow forecasting at regional scale by combining susceptibility mapping and radar rainfall. Nat Hazards Earth Syst Sci 15:587–602. https://doi.org/10.5194/nhess-15-587-2015

    Article  Google Scholar 

  9. Berti M, Martina MLV, Franceschini S, Pignone S, Simoni A, Pizziolo M (2015) Implementation of a probabilistic model of landslide occurrence on a civil protection alert system at regional scale. In: Engineering geology for society and territory - volume 2: landslide processes, pp 659–662

    Chapter  Google Scholar 

  10. Bogaard T, Greco R (2018) Invited perspectives: hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds. Nat Hazards Earth Syst Sci 18:31–39. https://doi.org/10.5194/nhess-18-31-2018

    Article  Google Scholar 

  11. Borga M, Stoffel M, Marchi L, Marra F, Jakob M (2014) Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows. J Hydrol 518:194–205. https://doi.org/10.1016/j.jhydrol.2014.05.022

    Article  Google Scholar 

  12. Bregoli F, Medina V, Chevalier G, Hürlimann M, Bateman A (2015) Debris-flow susceptibility assessment at regional scale: validation on an alpine environment. Landslides 12:437–454. https://doi.org/10.1007/s10346-014-0493-x

    Article  Google Scholar 

  13. Calvello M, Cascini L, Mastroianni S (2013) Landslide zoning over large areas from a sample inventory by means of scale-dependent terrain units. Geomorphology 182:33–48. https://doi.org/10.1016/j.geomorph.2012.10.026

    Article  Google Scholar 

  14. Calvello M, d’Orsi RN, Piciullo L, Paes N, Magalhaes M, Lacerda WA (2014) The Rio de Janeiro early warning system for rainfall-induced landslides: analysis of performance for the years 2010-2013. Int J Disaster Risk Reduct 12:3–15. https://doi.org/10.1016/j.ijdrr.2014.10.005

    Article  Google Scholar 

  15. Carrara A, Crosta G, Frattini P (2007) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94:353–378. https://doi.org/10.1016/j.geomorph.2006.10.033

    Article  Google Scholar 

  16. Casas MC, Codina B, Redano A, Lorente J (2004) A methodology to classify extreme rainfall events in the western mediterranean area. Theor Appl Climatol 77:139–150. https://doi.org/10.1007/s00704-003-0003-x

    Article  Google Scholar 

  17. Chen C, Lin LL, Yu F, Lee C, Tseng TC, Wang AW, Kei-wai C (2007) Improving debris flow monitoring in Taiwan by using high-resolution rainfall products from QPESUMS. Nat Hazards 40:447–461. https://doi.org/10.1007/s11069-006-9004-2

    Article  Google Scholar 

  18. Chevalier GG (2013) Assessing debris-flow hazard focusing on statistical morpho-fluvial susceptibility models and magnitude-frequency relationships: application to the Central-Eastern Pyrenees. TDX (Tesis Dr en Xarxa)

  19. Chevalier G, Medina V, Hürlimann M, Bateman A (2013) Debris-flow susceptibility analysis using fluvio-morphological parameters: application to the Central-Eastern Pyrenees. Nat Hazards 67:213–238. DOI. https://doi.org/10.1007/s11069-013-0568-3

    Article  Google Scholar 

  20. Ciurleo M, Calvello M, Cascini L (2016) Susceptibility zoning of shallow landslides in fine grained soils by statistical methods. Catena 139:250–264. https://doi.org/10.1016/j.catena.2015.12.017

    Article  Google Scholar 

  21. Corominas C (2000) Landslides and climate. 8th Int Symp Landslides 1–33

  22. Corominas J, Moya J, Hürlimann M (2002) Landslide rainfall triggers in the Spanish Eastern Pyrenees. In: 4th EGS Plinius Conference “Mediterranean storms”. Editrice, Mallorca, pp 1–4

  23. Corral C, Velasco D, Forcadell D, Sempere-Torres D, Velasco E (2009) Advances in radar-based flood warning systems. The EHIMI system and the experience in the Besòs flash-flood pilot basin. Flood Risk Manag Res Pract Ext Abstr Vol 332 Pages Full Pap CDROM 1772 Pages 1295–1303

  24. CREAF (2009) Mapa de Cobertes del Sòl de Catalunya (MSC-4), V4 edn

  25. EEA (1990) CORINE land cover - contents. CORINE L Cover 1–163

  26. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  27. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ, on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  28. Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181. https://doi.org/10.5194/nhess-18-2161-2018

    Article  Google Scholar 

  29. Gallart F, Clotet N (1988) Some aspects of the geomorphic processes triggered by an extreme rainfall event: the November 1982 flood in Eastern Pyrenees. Catena Suppl 79–95

  30. Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 162:227–252. https://doi.org/10.1016/j.earscirev.2016.08.011

    Article  Google Scholar 

  31. Gariano SL, Petrucci O, Rianna G, Santini M, Guzzetti F (2018) Impacts of past and future land changes on landslides in Southern Italy. Reg Environ Chang 18:437–449. https://doi.org/10.1007/s10113-017-1210-9

    Article  Google Scholar 

  32. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. https://doi.org/10.1007/s10346-007-0112-1

    Article  Google Scholar 

  33. Hansen MJ (1984) Strategies for classification of landslides. In: Brunsden D (ed) Slope instability. John Wiley, Chichester, pp 1–25

    Google Scholar 

  34. Huat LT, Ali F, Osman AR, Rahman NA (2012) Web based real time monitoring system along North-South Expressway, Malaysia. Electron J Geotech Eng 17:623–632

    Google Scholar 

  35. Hürlimann M, Abancó C, Moya J, Vilajosana I (2014) Results and experiences gathered at the Rebaixader debris-flow monitoring site, Central Pyrenees, Spain. Landslides 11:939–953

    Article  Google Scholar 

  36. Hürlimann M, Lantada N, Gonzalez M, Pinyol J (2016) Susceptibility assessment of rainfall-triggered flows and slides in the Central-Eastern Pyrenees. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds) XII Int. symposium on landslides and engineered slopes. CRC, Naples, pp 1129–1136

    Google Scholar 

  37. Hürlimann M, Palau RM, Berenguer M, Pinyol J (2017) Analysis of the rainfall conditions inducing torrential activity in the Portainé catchment (Eastern Pyrenees, Spain). Geophys Res Abstr 19:12494

    Google Scholar 

  38. ICGC (2013) Model d’Elevacions del Terreny de Catalunya 5x5metres v1.0 (MET-5 v1.0). ICGC

  39. Jakob M, Hungr O (2005) Debris flow hazards and related phenomena. Springer, Berlin

    Google Scholar 

  40. Kirschbaum D, Stanley T (2018) Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness. Earth’s Future 6:505–523. https://doi.org/10.1002/2017EF000715

    Article  Google Scholar 

  41. Kirschbaum D, Stanley T, Yatheendradas S (2016) Modeling landslide susceptibility over large regions with fuzzy overlay. Landslides 13:485–496. https://doi.org/10.1007/s10346-015-0577-2

    Article  Google Scholar 

  42. Krøgli IK, Devoli G, Colleuille H, Boje S, Sund M, Engen IK (2018) The Norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides. Nat Hazards Earth Syst Sci 18:1427–1450. https://doi.org/10.5194/nhess-18-1427-2018

    Article  Google Scholar 

  43. Leopold P, Heiss G, Petschko H, Bell R, Glade T (2013) Susceptibility maps for landslides using different modelling approaches. Landslide Sci Pract 1:353–356. https://doi.org/10.1007/978-3-642-31325-7-46

    Article  Google Scholar 

  44. Liao Z, Hong Y, Wang J, Fukuoka H, Sassa K, Karnawati D, Fathani F (2010) Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslides 7:317–324. https://doi.org/10.1007/s10346-010-0219-7

    Article  Google Scholar 

  45. Liu C, Li W, Wu H, Lu P, Sang K, Sun W, Chen W, Hong Y, Li R (2013) Susceptibility evaluation and mapping of China’s landslides based on multi-source data. Nat Hazards 69:1477–1495. https://doi.org/10.1007/s11069-013-0759-y

    Article  Google Scholar 

  46. Lloyd DM, Wilkinson PL, Othman AM, Anderson MG (2001) Predicting landslides: assessment of an automated rainfall based landslide warning system. In: Ho KKS, Li KS (eds) 14th South East Asia geotechnical conference. Balkema, Hong Kong, pp 135–139

    Google Scholar 

  47. Marra F, Nikolopoulos EI, Creutin JD, Borga M (2014) Radar rainfall estimation for the identification of debris-flow occurrence thresholds. J Hydrol 519:1607–1619. https://doi.org/10.1016/j.jhydrol.2014.09.039

    Article  Google Scholar 

  48. Mendel JM (1995) Fuzzy logic systems for engineering: a tutorial. Proc IEEE 83:345–377. https://doi.org/10.1109/5.364485

    Article  Google Scholar 

  49. Mira M, Ninyerola M, Batalla M, Pesquer L, Pons X (2017) Improving mean minimum and maximum month-to-month air temperature surfaces using satellite-derived land surface temperature. Remote Sens 9(12):1313

  50. Mirus B, Morphew M, Smith J (2018) Developing hydro-meteorological thresholds for shallow landslide initiation and early warning. Water 10:1274. https://doi.org/10.3390/w10091274

    Article  Google Scholar 

  51. Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. https://doi.org/10.1007/s10346-006-0036-1

    Article  Google Scholar 

  52. NOAA-USGS Debris Flow Task Force (2005) NOAA-USGS debris-flow warning system - final report

  53. Osanai N, Shimizu T, Kuramoto K, Kojima S, Noro T (2010) Japanese early-warning for debris flows and slope failures using rainfall indices with radial basis function network. Landslides 7:325–338. https://doi.org/10.1007/s10346-010-0229-5

    Article  Google Scholar 

  54. Palau RM, Hürlimann M, Pinyol J, Moya J, Victoriano A, Génova M, Puig-Polo C (2017) Recent debris flows in the Portainé catchment (Eastern Pyrenees, Spain): analysis of monitoring and field data focussing on the 2015 event. Landslides 14:1161–1170. https://doi.org/10.1007/s10346-017-0832-9

    Article  Google Scholar 

  55. Pan HL, Jiang YJ, Wang J, Ou GQ (2018) Rainfall threshold calculation for debris flow early warning in areas with scarcity of data. Nat Hazards Earth Syst Sci 18:1395–1409. https://doi.org/10.5194/nhess-18-1395-2018

    Article  Google Scholar 

  56. Papa MN, Medina V, Ciervo F, Bateman A (2013) Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems. Hydrol Earth Syst Sci 17:4095–4107. https://doi.org/10.5194/hess-17-4095-2013

    Article  Google Scholar 

  57. Persichillo MG, Bordoni M, Meisina C (2017) The role of land use changes in the distribution of shallow landslides. Sci Total Environ 574:924–937. https://doi.org/10.1016/j.scitotenv.2016.09.125

    Article  Google Scholar 

  58. Piciullo L, Gariano SL, Melillo M, Brunetti MT, Peruccacci S, Guzzetti F, Calvello M (2017) Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides 14:995–1008. https://doi.org/10.1007/s10346-016-0750-2

    Article  Google Scholar 

  59. Pisano L, Zumpano V, Malek, Rosskopf CM, Parise M (2017) Variations in the susceptibility to landslides, as a consequence of land cover changes: a look to the past, and another towards the future. Sci Total Environ 601–602:1147–1159. https://doi.org/10.1016/j.scitotenv.2017.05.231

    Article  Google Scholar 

  60. Portilla Gamboa ME (2014) Reconstrucción y análisis de ocurrencias regionales de múltiples eventos de movimientos en masa generados por lluvias históricas en los Pirineos. Tesi Dr

  61. Portilla M, Chevalier G, Hürlimann M (2010a) Description and analysis of major mass movements occurred during 2008 in the Eastern Pyrenees. Nat Hazards Earth Syst Sci 10:1635–1645. https://doi.org/10.5194/nhess-10-1635-2010

    Article  Google Scholar 

  62. Raïmat Quintana C (2018) Dinámica y peligrosidad de las corrientes de derrubios : aplicación en el barranco de Erill, Pirineo catalán. TDX (Tesis Dr en Xarxa)

  63. Rossi M, Luciani S, Valigi D, Kirschbaum D, Brunetti MT, Peruccacci S, Guzzetti F (2017) Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphology 285:16–27. https://doi.org/10.1016/j.geomorph.2017.02.001

    Article  Google Scholar 

  64. Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T (2002) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can Geotech J 38:995–1024. https://doi.org/10.1139/cgj-38-5-995

    Article  Google Scholar 

  65. Schwarz M, Preti F, Giadrossich F, Lehmann P, Or D (2010) Quantifying the role of vegetation in slope stability: a case study in Tuscany (Italy). Ecol Eng 36:285–291. https://doi.org/10.1016/j.ecoleng.2009.06.014

    Article  Google Scholar 

  66. Segoni S, Rosi A, Fanti R, Gallucci A, Monni A, Casagli N (2018) A regional-scale landslide warning system based on 20 years of operational experience:1–17. https://doi.org/10.3390/w10101297

  67. Shu H, Hürlimann M, Molowny-Horas R, González M, Pinyol J, Ma J (2019) Relation between land cover and landslide susceptibility in Val d’Aran, Pyrenees (Spain): historical aspects, present situation and forward prediction. Sci Total Environ 133557

  68. Strahler AN (1957) Quantitative analysis of watershed geomorphology. EOS Trans Am Geophys Union 38:913–920. https://doi.org/10.1029/tr038i006p00913

    Article  Google Scholar 

  69. UNISDR (2015) Sendai framework for disaster risk reduction. In: Third United Nations world conference on disaster risk reduction. pp 1–25

  70. Wilde M, Günther A, Reichenbach P, Malet J-P, Hervás J (2018) Pan-European landslide susceptibility mapping: ELSUS version 2. J Maps 14:97–104. https://doi.org/10.1080/17445647.2018.1432511

    Article  Google Scholar 

  71. Yin K, Chen L, Zhang G (2008) Regional landslide hazard warning and risk assessment. Earth Sci Front 14:85–93. https://doi.org/10.1016/s1872-5791(08)60005-6

    Article  Google Scholar 

  72. Zawadzki I (1984) Factors affecting the precision of radar measurements of rain. In: 22nd conference on radar meteorology. American Meteorological Society, Zurich, pp 251–256

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Meteorological Service of Catalonia (SMC) for providing the radar data.

Funding

This work has been partially funded by the EC H2020 project ANYWHERE (DRS-01-2015-700099) and the Spanish project SMuCPhy (BIA 2015-67500-R). Also, the first author is supported by a grant from the Secretariat of Universities and Research of the Ministry of Business and Knowledge of the Generalitat de Catalunya.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Palau.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palau, R.M., Hürlimann, M., Berenguer, M. et al. Influence of the mapping unit for regional landslide early warning systems: comparison between pixels and polygons in Catalonia (NE Spain). Landslides 17, 2067–2083 (2020). https://doi.org/10.1007/s10346-020-01425-3

Download citation

Keywords

  • Landslides
  • Early warning systems
  • Mapping units
  • Susceptibility analysis