Skip to main content

Monitoring of large-scale landslides in Zongling, Guizhou, China, with improved distributed scatterer interferometric SAR time series methods

Abstract

The Zongling landslide (Nayong, Guizhou, China) is dominated by a unique karst landscape area with many landslide masses. In this paper, an improved Interferometric Point Target Analysis (IPTA) method is proposed to identify and monitor the Zongling landslide. In this method, the Anderson-Darling test is applied to distributed scatterer (DS) selection, and DS and persistent scatterer (PS) are combined to improve the density of measurement points in vegetation area. Moreover, this method is also characterized by the appropriate combination of differential interferograms produced by a small baseline subsets and the employment of the phase triangulation algorithm to estimate the optimal phase. Combining 105 scenes of C-band Sentinel-1A ascending and descending data acquired during 2014–2018, the method is applied to retrieve time series displacement for the large-scale landslide in Zongling Town. Finally, three accelerating landslides are identified from our result, which is consistent with ALOS PALSAR differential interferometry synthetic aperture radar (DInSAR) results and field investigation. The influencing factors and deformation mechanism of the Zongling landslide are also analysed. Our monitoring results will help the local government to conduct regular inspections and strengthen disaster prevention in mountain areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. Barra A, Solari L, Béjar-Pizarro M, Monserrat O, Bianchini S, Herrera G, Crosetto M, Sarro R, González-Alonso E, Mateos RM (2017) A methodology to detect and update active deformation areas based on sentinel-1 SAR images. Remote Sens 9:1002

    Google Scholar 

  2. Béjar-Pizarro M, Notti D, Mateos RM, Ezquerro P, Centolanza G, Herrera G, Bru G, Sanabria M, Solari L, Duro J (2017) Mapping vulnerable urban areas affected by slow-moving landslides using sentinel-1 InSAR data. Remote Sens 9:876

    Google Scholar 

  3. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383

    Article  Google Scholar 

  4. Bianchini S, Herrera G, Mateos R, Notti D, Garcia I, Mora O, Moretti S (2013) Landslide activity maps generation by means of persistent scatterer interferometry. Remote Sens 5(12):6198–6222

    Google Scholar 

  5. Bonì R, Bordoni M, Colombo A, Lanteri L, Meisina C (2018) Landslide state of activity maps by combining multi-temporal A-DInSAR (lambda). Remote Sens Environ 217:172–190

    Google Scholar 

  6. Carnec C, Massonnet D, King C (1996) Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophys Res Lett 23:3579–3582

    Google Scholar 

  7. Cascini L, Fornaro G, Peduto D (2009) Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS J Photogramm Remote Sens 64:598–611

    Google Scholar 

  8. Cascini L, Fornaro G, Peduto D (2010) Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng Geol 112:29–42

    Google Scholar 

  9. Catani F, Farina P, Moretti S, Nico G, Strozzi T (2005) On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements. Geomorphology 66:119–131

    Google Scholar 

  10. Cigna F, Bateson LB, Jordan CJ, Dashwood C (2014) Simulating SAR geometric distortions and predicting persistent scatterer densities for ers-1/2 and ENVISAT C-band SARand InSAR applications: Nationwide feasibility assessment to monitor the landmass of great Britain with SAR imagery. Remote Sens Environ 152:441–466

    Google Scholar 

  11. Cigna F, Bianchini S, Casagli N (2013) How to assess landslide activity and intensity with persistent scatterer interferometry (psi): the psi-based matrix approach. Landslides 10:267–283

    Google Scholar 

  12. Colesanti C, Wasowski J (2006) Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Eng Geol 88:173–199

    Google Scholar 

  13. Corsini A, Farina P, Antonello G, Barbieri M, Casagli N, Coren F, Guerri L, Ronchetti F, Sterzai P, Tarchi D (2007) Space-borne and ground-based SAR interferometry as tools for landslide hazard management in civil protection. Int J Remote Sens 27:2351–2369

    Google Scholar 

  14. Costantini M, Falco S, Malvarosa F, Minati F, Trillo F, Vecchioli F (2014) Persistent scatterer pair interferometry: approach and application to COSMO-SkyMed SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7:2869–2879. https://doi.org/10.1109/jstars.2014.2343915

    Article  Google Scholar 

  15. Del Soldato M, Riquelme A, Bianchini S, Tomàs R, Di Martire D, De Vita P, Moretti S, Calcaterra D (2018) Multisource data integration to investigate one century of evolution for the Agnone landslide (Molise, southern Italy). Landslides 15:2113–2128

    Google Scholar 

  16. Dong J, Zhang L, Tang M, Liao M, Xu Q, Gong J, Ao M (2018) Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: a case study of Jiaju landslide in Danba, China. Remote Sens Environ 205:180–198

    Google Scholar 

  17. Du J-C, Teng H-C (2007) 3d laser scanning and GPS technology for landslide earthwork volume estimation. Autom Constr 16:657–663

    Google Scholar 

  18. Fan X, Xu Q, Scaringi G, Zheng G, Huang R, Dai L, Ju Y (2019) The “long” runout rock avalanche in Pusa, China, on august 28, 2017: a preliminary report. Landslides 16:139–154

    Google Scholar 

  19. Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217

    Google Scholar 

  20. Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38:2202–2212

    Google Scholar 

  21. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20

    Google Scholar 

  22. Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49:3460–3470

    Google Scholar 

  23. Frodella W, Ciampalini A, Gigli G, Lombardi L, Raspini F, Nocentini M, Scardigli C, Casagli N (2016) Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (northern Italy). Geomorphology 264:80–94

    Google Scholar 

  24. García-Davalillo JC, Herrera G, Notti D, Strozzi T, Álvarez-Fernández I (2013) Dinsar analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena valley case study. Landslides 11:225–246

    Google Scholar 

  25. García-Davalillo JC, Herrera G, Notti D, Strozzi T, Álvarez-Fernández I (2014) DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena valley case study. Landslides 11:225–246

    Google Scholar 

  26. Goel K, Adam N (2014) A distributed scatterer interferometry approach for precision monitoring of known surface deformation phenomena. IEEE Trans Geosci Remote Sens 52:5454–5468

    Google Scholar 

  27. Gomba G, González FR, De Zan F (2016) Ionospheric phase screen compensation for the sentinel-1 tops and ALOS-2 ScanSAR modes. IEEE Trans Geosci Remote Sens 55:223–235

    Google Scholar 

  28. Greif V, Vlcko J (2011) Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia. Environ Earth Sci 66:1585–1595

    Google Scholar 

  29. Herrera G, Davalillo J, Mulas J, Cooksley G, Monserrat O, Pancioli V (2009) Mapping and monitoring geomorphological processes in mountainous areas using psi data: Central Pyrenees case study. Nat Hazards Earth Syst Sci 9:1587

    Google Scholar 

  30. Herrera G, Notti D, García-Davalillo JC, Mora O, Cooksley G, Sánchez M, Arnaud A, Crosetto M (2011) Analysis with C-and X-band satellite SAR data of the Portalet landslide area. Landslides 8:195–206

    Google Scholar 

  31. Herrera G, Gutiérrez F, García-Davalillo JC, Guerrero J, Notti D, Galve JP, Fernández-Merodo JA, Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens Environ 128:31–43

  32. Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35

  33. Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31

  34. Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research 112

  35. Huang Q-H, Cai Y-L (2007) Spatial pattern of karst rock desertification in the middle of Guizhou province, southwestern China. Environ Geol 52:1325–1330

    Google Scholar 

  36. Huang M, Qi S, Shang G (2012) Karst landslides hazard during 1940–2002 in the mountainous region of Guizhou province, Southwest China. Nat Hazards 60:781–784

    Google Scholar 

  37. Intrieri E, Raspini F, Fumagalli A, Lu P, Del Conte S, Farina P, Allievi J, Ferretti A, Casagli N (2018) The Maoxian landslide as seen from space: detecting precursors of failure with sentinel-1 data. Landslides 15:123–133

    Google Scholar 

  38. Kampes BM, Hanssen RF (2004) Ambiguity resolution for permanent scatterer interferometry. IEEE Trans Geosci Remote Sens 42:2446–2453

    Google Scholar 

  39. Komac M, Holley R, Mahapatra P, van der Marel H, Bavec M (2015) Coupling of GPS/GNSS and radar interferometric data for a 3d surface displacement monitoring of landslides. Landslides 12:241–257

    Google Scholar 

  40. Lanari R, Mora O, Manunta M, Mallorquí JJ, Berardino P, Sansosti E (2004) A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans Geosci Remote Sens 42:1377–1386

    Google Scholar 

  41. Lu P, Casagli N, Catani F, Tofani V (2012) Persistent scatterers interferometry hotspot and cluster analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int J Remote Sens 33:466–489

    Google Scholar 

  42. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth's surface. Rev Geophys 36

  43. Michoud C, Baumann V, Lauknes TR, Penna I, Derron M-H, Jaboyedoff M (2016) Large slope deformations detection and monitoring along shores of the Potrerillos dam reservoir, Argentina, based on a small-baseline InSAR approach. Landslides 13:451–465

    Google Scholar 

  44. Mora O, Mallorqui JJ, Broquetas A (2003) Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens 41:2243–2253

    Google Scholar 

  45. Niethammer U, James R, Rothmund S (2012) UAV-based remote sensing of the Super-Sauze landslide: evaluation and results. Eng Geol 128:2–11

    Google Scholar 

  46. Notti D, Herrera G, Bianchini S, Meisina C, García-Davalillo JC, Zucca F (2014) A methodology for improving landslide psi data analysis. Int J Remote Sens 35:2186–2214

    Google Scholar 

  47. Parizzi A, Brcic R (2010) Adaptive InSAR stack multilooking exploiting amplitude statistics: a comparison between different techniques and practical results. IEEE Geosci Remote Sens Lett 8:441–445

    Google Scholar 

  48. Perissin D, Wang T (2011) Time-series InSAR applications over urban areas in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4:92–100

    Google Scholar 

  49. Perissin D, Wang T (2012) Repeat-pass SAR interferometry with partially coherent targets. IEEE Trans Geosci Remote Sens 50:271–280

    Google Scholar 

  50. Raspini F, Bianchini S, Ciampalini A, Del Soldato M, Solari L, Novali F, Del Conte S, Rucci A, Ferretti A, Casagli N (2018) Continuous, semi-automatic monitoring of ground deformation using sentinel-1 satellites. Sci Rep 8:7253

    Google Scholar 

  51. Raspini F, Moretti S, Casagli N (2013) Landslide mapping using SqueeSAR data: Giampilieri (Italy) case study. Springer, Landslide science and practice, pp 147–154

    Google Scholar 

  52. Righini G, Pancioli V, Casagli N (2012) Updating landslide inventory maps using persistent scatterer interferometry (PSI). Int J Remote Sens 33:2068–2096

    Google Scholar 

  53. Rosi A, Tofani V, Tanteri L, Stefanelli CT, Agostini A, Catani F, Casagli N (2018) The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides 15:5–19

    Google Scholar 

  54. Rott H, Scheuchl B, Siegel A, Grasemann B (1999) Monitoring very slow slope movements by means of SAR interferometry: a case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophys Res Lett 26:1629–1632

    Google Scholar 

  55. Schmidt DA, Bürgmann R (2003) Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research: Solid Earth 108

  56. Shi X, Liao M, Li M, Zhang L, Cunningham C (2016) Wide-area landslide deformation mapping with multi-path ALOS PALSAR data stacks: a case study of Three Gorges area, China. Remote Sens 8:136

    Google Scholar 

  57. Squarzoni C, Delacourt C, Allemand P (2005) Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Eng Geol 79:215–229

    Google Scholar 

  58. Stiros SC, Vichas C, Skourtis C (2004) Landslide monitoring based on geodetically derived distance changes. J Surv Eng 130:156–162

    Google Scholar 

  59. Strozzi T, Farina P, Corsini A, Ambrosi C, Thüring M, Zilger J, Wiesmann A, Wegmüller U, Werner C (2005) Survey and monitoring of landslide displacements by means of l-band satellite SAR interferometry. Landslides 2:193–201

    Google Scholar 

  60. Tang P, Chen F, Guo H, Tian B, Wang X, Ishwaran N (2015) Large-area landslides monitoring using advanced multi-temporal InSAR technique over the giant panda habitat, Sichuan, China. Remote Sens 7:8925–8949

    Google Scholar 

  61. Tofani V, Raspini F, Catani F, Casagli N (2013) Persistent scatterer interferometry (psi) technique for landslide characterization and monitoring. Remote Sens 5:1045–1065

    Google Scholar 

  62. Tomás R, Li Z, Liu P, Singleton A, Hoey T, Cheng X (2014) Spatiotemporal characteristics of the Huangtupo landslide in the three gorges region (China) constrained by radar interferometry. Geophys J Int 197:213–232

    Google Scholar 

  63. Wang SJ, Liu QM, Zhang DF (2004) Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation. Land Degrad Dev 15:115–121

    Google Scholar 

  64. Werner C, Wegmuller U, Strozzi T and Wiesmann A (2003) Interferometric point target analysis for deformation mapping. IGARSS 2003 2003 IEEE International Geoscience and Remote Sensing Symposium Proceedings (IEEE Cat No 03CH37477), IEEE, pp 4362–4364

  65. Xing A, Wang G, Li B, Jiang Y, Feng Z, Kamai T (2015) Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling, Guizhou, China. Can Geotech J 52:971–981

    Google Scholar 

  66. Xing A, Xu Q, Zhu Y, Zhu J, Jiang Y (2016) The August 27, 2014, rock avalanche and related impulse water waves in Fuquan, Guizhou, China. Landslides 13:411–422

    Google Scholar 

  67. Yin Y, Sun P, Zhu J, Yang S (2011) Research on catastrophic rock avalanche at Guanling, Guizhou, China. Landslides 8:517–525

    Google Scholar 

  68. Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 7:359–365

    Google Scholar 

  69. Zebker HA, Villasenor J (1992) Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience & Remote Sensing 30: 0–959

  70. Zhang L, Lu Z, Ding X, Jung H-s, Feng G, Lee C-W (2012) Mapping ground surface deformation using temporarily coherent point SAR interferometry: application to Los Angeles basin. Remote Sens Environ 117:429–439

    Google Scholar 

  71. Zhang Z, Wang C, Zhang H, Tang Y, Liu X (2018) Analysis of permafrost region coherence variation in the Qinghai–Tibet plateau with a high-resolution terrasar-x image. Remote Sens 10:298

    Google Scholar 

  72. Zhao C, Kang Y, Zhang Q, Lu Z, Li B (2018) Landslide identification and monitoring along the Jinsha river catchment (Wudongde reservoir area), China, using the InSAR method. Remote Sens 10:993

    Google Scholar 

  73. Zhu Y, Xu S, Zhuang Y, Dai X, Lv G, Xing A (2019) Characteristics and runout behaviour of the disastrous 28 august 2017 rock avalanche in Nayong, Guizhou, China. Eng Geol 259:105154

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Copernicus programme for the free access to Sentinel-1 images processed in this analysis and ALOS/PALSAR data are provided by the Third Institute of Surveying and Mapping in Guizhou Province.

Funding

This research was funded by the National Natural Science Foundation of China under Grants 41930110 and 41801348.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chao Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, C., Xie, C. et al. Monitoring of large-scale landslides in Zongling, Guizhou, China, with improved distributed scatterer interferometric SAR time series methods. Landslides 17, 1777–1795 (2020). https://doi.org/10.1007/s10346-020-01407-5

Download citation

Keywords

  • Landslide
  • Interferometric Point Target Analysis (IPTA)
  • Distributed scatterer
  • Landslide identification