Angulo-Martínez M, Beguería S, Latorre B, Fernández-Raga M (2018) Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers. Hydrol Earth Syst Sci 22:2811–2837. https://doi.org/10.5194/hess-22-2811-2018
Article
Google Scholar
ARSO (2019) IDF curves. Available online: https://meteo.arso.gov.si/met/sl/climate/tables/precip_return_periods_newer/. (Accessed on 9 July 2019).
Atlas Okolja (2019) Available online: http://gis.arso.gov.si/atlasokolja/profile.aspx?id=Atlas_Okolja_AXL@Arso. (Accessed on 9 July 2019).
BASEGRAIN, 2019. Available online: https://basement.ethz.ch/download/tools/basegrain.html. (Accessed on 9 July 2019).
Bezak N, Šraj M, Mikoš M (2016) Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides. J Hydrol 541(A):272–284
Google Scholar
Bezak N, Grigillo D, Urbančič T, Mikoš M, Petrovič D, Rusjan S (2017) Geomorphic response detection and quantification in a steep forested torrent. Geomorphology 291:33–44
Google Scholar
Bezak N, Šraj M, Mikoš M (2018) Design rainfall in engineering applications with focus on the design discharge. In Engineering and Mathematical Topics in Rainfall; InTech Press: London, UK, ISBN 978-953-51-5562-1.
Bezak N, Jemec Auflič M, Mikoš M (2019a) Application of hydrological modelling for temporal prediction of rainfall-induced shallow landslides. Landslides 16(7):1273–1283
Google Scholar
Bezak N, Sodnik J, Mikoš M (2019b) Impact of a random sequence of debris flows on torrential fan formation. Geosciences 9(2):64. https://doi.org/10.3390/geosciences9020064
Article
Google Scholar
Calhoun NC, Clague JJ (2018) Distinguishing between debris flows and hyperconcentrated flows: an example from the eastern Swiss Alps. Earth Surf Process Landf 43:1280–1294
Google Scholar
Ceriani M, Crosta G, Frattini P, Quattrini S (2000) Evaluation of hydrogeological hazard on alluvial fans. In : Interpreavent 2000 – Villach, Tagungspublikation, Vol. 2., 213-225, http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2000_2_213.pdf.
Cesca M, D’Agostino V (2008) Comparison between FLO-2D in RAMMS in debris-flow modelling: a case study in the Dolomites. WIT Trans Eng Sci 60:197–206
Google Scholar
Chen C, Lin Y, Chung H, Hsieh T, Yang J, Lu J (2018) Modelling of hyperconcentrated flow in steep-sloped channels. J Hydraul Res 56(3):380–398
Google Scholar
Christen M, Bühler Y, Bartelt P, Leine R, Glover J, Schweizer A, Graf C, Mc Ardell BW, Gerber W, Deubelbeiss Y, et al. (2012) Integral hazard management using a unified software environment: Numerical simulation tool “RAMMS” for gravitational natural hazards. In Proceedings of the 12th Congress INTERPRAEVENT, Grenoble, France, 23–26 April 2012; Koboltschnig, G., Hübl, J., Braun, J., Eds.; pp. 77–86.
Dietrich A, Krautblatter M (2019) Deciphering controls for debris-flow erosion derived from a LiDAR-recorded extreme event and a calibrated numerical model (Roßbichelbach, Germany). Earth Surf Process Landf 44:1346–1361
Google Scholar
Fehr R (1987) Geschiebeanalysen in Gebirgsflüssen (Grain Size Analysis in Torrents), Mitteilung Nr. In: 92, Versuchsanstalt für Wasserbau. Zürich, Hydrologie und Glaziologie (VAW), ETH Zürich (in German)
Google Scholar
Hungr O, Leroueil S, Picarell L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194
Google Scholar
Jemec Auflič M, Šinigoj J, Krivic M, Podboj M, Peternel T, Komac M (2016) Landslide prediction system for rainfall induced landslides in Slovenia (Masprem). Geologija 59(2):259–271
Google Scholar
Joingxin X (1999) Erosion caused by hyperconcentrated flow on the Loess Plateau of China. Catena 36:1–19
Google Scholar
HEC-HMS (2019) Reference Manual. Available online: http://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.2.pdf. (Accessed on 9 July 2019).
Herrera G, Mateos RM, García-Davalillo JC, Grandjean G, Poyiadji E, Maftei R, Filipciuc T-C, Jemec Auflič M, Jež J, Podolszki L, Trigila A, Iadanza C, Raetzo H, Kociu A, Przyłucka M, Kułak M, Sheehy M, Pellicer XM, McKeown C, Ryan G, Kopačková V, Frei M, Kuhn D, Hermanns RL, Koulermou N, Smith CA, Engdahl M, Buxó P, Gonzalez M, Dashwood C, Reeves H, Cigna F, Liščák P, Pauditš P, Mikulėnas V, Demir V, Raha M, Quental L, Sandić C, Fusi B, Jensen OA (2018) Landslide databases in the Geological Surveys of Europe. Landslides 15(2):359–379
Google Scholar
Horvat A (1995) Urejanje hudourniških in erozijskih območij. Ujma 9:243–248 (In Slovenian)
Google Scholar
Hübl J, Fiebiger G (2005) Debris-flow mitigation measures. In: Jakob M, Hungr O (eds) debris-flow hazards and related phenomena. Springer, Berlin, pp 445–487
Google Scholar
Hübl J, Nagl G (2018). Austrian Standard Regulations for the design of check dams under impact by torrential processes. Proceedings of the 5th IAHR Europe Congress – New Challenges in Hydraulic Research and Engineering, Trento.
Klaneček M, Zupančič A, Sušec-Šuker V, Ilc U, Podobnikar I, Globokar T (2008) Poplave 2007 – intervencijski ukrepi, predhodni sanacijski in sanacijski program. Mišičev vodarski dan 2008:196–210 (In Slovenian)
Google Scholar
Marchi L, D'Agostino V (2004) Estimation of debris-flow magnitude in the eastern Italian Alps. Earth Surf Process Landf 29:207–220
Google Scholar
Mergili M, Schneider D, Worni R, Schneider J (2011) Glacial lake outburst floods in the Pamir of Tajikistan: challenges in prediction and modelling. In: Genevois, R; Hamilton, D L; Prestininzi, A. 5th international conference on debris-flow hazards mitigation: mechanics, prediction and assessment. Padua: Università La Sapienza, 973-982.
Marchi L, Brunetti MT, Cavalli M, Crema S (2019) Debris-flow volumes in northeastern Italy: relationship with drainage area and size probability. Earth Surf Process Landf 44:933–943
Google Scholar
Melton MA (1965) The geomorphic and paleoclimatic significance of alluvial deposits in Southern Arizona. J Geol 73(1):1–38
Google Scholar
Mikoš M, Četina M, Brilly M (2004) Hydrologic conditions responsible for triggering the Stoze landslide. Slovenia Eng Geol 73(3–4):193–213
Google Scholar
Mikoš M, Fazarinc R, Pulko B, Petkovšek A, Majes B (2005) Stepwise mitigation of the Macesnik landslide. N Slovenia Nat Hazards Earth Syst Sci 5(6):947–958
Google Scholar
Mikoš M, Jemec M, Ribičič M, Čarman M, Komac M (2013) Earthquake-induced landslides in Slovenia: historical evidence and present analyses. In: Ugai K, Yagi H, Wakai A (eds) earthquake induced-landslides. Springer, Berlin, pp 225–233
Google Scholar
Panagos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Meusburger K, Montanarella L, Alewell C (2015a) The new assessment of soil loss by water erosion in Europe. Environ Sci Pol 54:438–447
Google Scholar
Panagos P, Ballabio C, Borrelli P, Meusburger K, Klik A, Rousseva S, Tadić MP, Michaelides S, Hrabalíková M, Olsen P, Aalto J, Lakatos M, Rymszewicz A, Dumitrescu A, Beguería S, Alewell C (2015b) Rainfall erosivity in Europe. Sci Total Environ 511:801–814. https://doi.org/10.1016/j.scitotenv.2015.01.008
Article
Google Scholar
Petkovšek A, Fazarinc R, Kočevar M, Maček M, Majes B, Mikoš M (2011) The Stogovce landslide in SW Slovenia triggered during the September 2010 extreme rainfall event. Landslides 8(4):499–506
Google Scholar
Pierson TC (2005) Hyperconcentrated flow; transitional process between water flow and debris flow. In: Jakob M, Hungr O (eds) debris-flow hazards and related phenomena. Springer, Berlin, pp 159–202
Google Scholar
Piton G, Recking A (2015) Design of sediment traps with open check dams. I: hydraulic and deposition processes. J Hydraul Eng 142(2):04015045
Google Scholar
RAMMS (2018) User Manual v1.7.0 Debris Flow. 2018. Available online: http://ramms.slf.ch/ramms/downloads/RAMMS_DBF_Manual.pdf. (accessed on 9 July 2019).
Rickenmann D, Recking A (2011) Evaluation of flow resistance in gravel-bed rivers through a large field data set. Water Resour Res 47(7):W07538
Google Scholar
Schneider D, Huggel C, Cochachin A, Guillen S, Garcia J (2014) Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv Geosci 35:145–155
Google Scholar
Scheidl C, Chiari M, Kaitna R, Mullegger M, Krawtschuk A, Zimmermann T, Proske D (2013) Analysing debris-flow impact models, based on a small scale modelling approach. Surv Geophys 34(1):121–140
Google Scholar
Smart GM, Jäggi MNR (1983) Sediment transport on steep slopes, Mitt. 64, pp. 89–191, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Zurich, Switzerland.
Sodnik J, Mikoš M (2006) Estimation of magnitudes of debris flows in selected torrential watersheds in Slovenia. Acta geogr Slov 46(1):93–123
Google Scholar
Šraj M, Dirnbek L, Brilly M (2010) The influence of effective rainfall on modeled runoff hydrograph. J Hydrol Hydromech 58:3–14
Google Scholar
Takei A (1984) Interdependence of sediment budget between individual torrents and river-system. Interpreavent 1984 – Villach, Vol. 2. Villach.
Tokay A, Wolff DB, Petersen WA (2014) Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel. J Atmos Ocean Technol. https://doi.org/10.1175/JTECH-D-13-00174.1
Zollinger F (1983) “Die Vorgänge in einem Geschiebeablagerungsplatz (ihre Morphologie und die Möglichkeiten einer Steuerung) [Processes in debris detention basins for torrent control (A morphology and the possibilities of control)].” Ph.D. thesis, ETH Zürich, Zurich, Switzerland (in German).