Advertisement

Landslides

pp 1–8 | Cite as

A comprehensive global database of giant landslides on volcanic islands

  • Jan BlahůtEmail author
  • Jan Balek
  • Jan Klimeš
  • Matt Rowberry
  • Michal Kusák
  • Jan Kalina
IPL/WCoE activities

Abstract

The first comprehensive global database of giant landslides on volcanic islands is outlined in this report. This database comprises a total of one hundred and eighty-two entries: the Atlantic Ocean hosts seventy-five giant landslides; the Pacific Ocean hosts sixty-seven giant landslides; and the Indian Ocean hosts forty giant landslides. To determine the spatial characteristics of each giant landslide, it has been necessary to georeference published maps using ArcGIS software coupled with global DTMs. Using the georeferenced outputs, it has been possible to measure the basic morphometric characteristics of each landslide such as its length, width, perimeter, area, and fall height. Landslide volumes have been calculated with a higher degree of certainty in thirty-five cases and with a lower degree of certainty in sixty-three cases while complete outlines of the landslide area have been defined in ninety-six cases. On the basis of these data, it has been possible to interrogate relationships between potentially significant variables. The age distribution of giant landslides on volcanic islands demonstrates that more than half of the records in the database occurred during the last 0.5 Ma. This global database of giant landslides on volcanic islands is hosted on the website of the Institute of Rock Structure & Mechanics: https://www.irsm.cas.cz/ext/giantlandslides. From there, the records can be downloaded as a spreadsheet or as a kml file for interrogation in a number of geospatial software programs including ArcGIS and Google Earth. This work is part of the activities of the International Consortium on landslides, namely, its International Programme on Landslides (Project No. 212).

Keywords

Landslide inventory Giant landslides Volcanic islands Debris avalanches Debris flows Slumps 

Notes

Funding information

The database of giant landslides on volcanic islands represents one of the activities of the ICL International Programme on Landslides (Project No. 212). Construction of the database has been supported by the Czech Science Foundation (Project No. GJ16-12227Y) and the conceptual development research organisation of the Institute of Rock Structure & Mechanics AV ČR (RVO:67985891).

References

  1. Acosta J, Uchupi E, Muñoz A, Herranz P, Palomo C, Ballesteros M, ZEE Working Group (2003) Geologic evolution of the Canarian Islands of Lanzarote, Fuerteventura, Gran Canaria, and La Gomera and comparison of landslides at these islands with those at Tenerife, La Palma, and El Hierro. Mar Geophys Res 24:1–40.  https://doi.org/10.1007/s11001-004-1513-3 Google Scholar
  2. Ancochea E, Hernán F, Huertas M, Brändle J, Herrera R (2006) A new chronostratigraphical and evolutionary model for La Gomera: implications for the overall evolution of the Canarian archipelago. J Volcanol Geotherm Res 157:271–293.  https://doi.org/10.1016/j.jvolgeores.2006.04.001 Google Scholar
  3. Battistini A, Segoni S, Manzo G, Catani F, Casagli N (2013) Web data mining for automatic inventory of geohazards at national scale. Appl Geogr 43:147–158.  https://doi.org/10.1016/j.apgeog.2013.06.012 Google Scholar
  4. Becerril L, Galve J, Morales J, Romero C, Sánchez N, Martí J, Galindo I (2016) Volcano-structure of El Hierro (Canary Islands). J Maps 12(Suppl 1):43–52.  https://doi.org/10.1080/17445647.2016.1157767 Google Scholar
  5. Begét J, Kienle J (1992) Cyclic formation of debris avalanches at Mount St Augustine Volcano. Nature 356:701–704.  https://doi.org/10.1038/356701a0 Google Scholar
  6. Blahůt J, Klimeš J, Rowberry M, Kusák M (2018) Database of giant landslides on volcanic islands - first results from the Atlantic Ocean. Landslides 15:823–827.  https://doi.org/10.1007/s10346-018-0967-3 Google Scholar
  7. Boulesteix T, Hildenbrand A, Soler V, Quidelleur X, Gillot P-Y (2013) Coeval giant landslides in the Canary Islands: implications for global, regional, and local triggers of giant flank collapses on oceanic volcanoes. J Volcanol Geotherm Res 257:90–98.  https://doi.org/10.1016/j.jvolgeores.2013.03.008 Google Scholar
  8. Břežný M, Pánek T (2017) Deep seated landslides affecting monoclinal flysch morphostructure: evaluation of LiDAR derived topography of the highest range of the Czech Carpathians. Geomorphology 285:44–57.  https://doi.org/10.1016/j.geomorph.2017.02.007 Google Scholar
  9. Brunet M, Le Friant A, Boudon G, Lafuerza S, Talling P, Hornbach M, Ishizuka O, Lebas E, Guyard H, IODP Expedition 340 Science Party (2016) Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: from volcano flank collapse to seafloor sediment failure? Geochem Geophys Geosyst 17:699–724.  https://doi.org/10.1002/2015GC006034 Google Scholar
  10. Brunetti M, Guzzetti F, Cardinali M, Fiorucci F, Santangelo M, Mancinelli P, Komatsu G, Borselli L (2014) Analysis of a new geomorphological inventory of landslides in Valles Marineris, Mars. Earth Planet Sci Lett 405:156–168.  https://doi.org/10.1016/j.epsl.2014.08.025 Google Scholar
  11. Capra L, Macías J, Scott K, Abrams M, Garduño-Monroy V (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico – behavior and implications for hazard assessment. J Volcanol Geotherm Res 113:81–110.  https://doi.org/10.1016/S0377-0273(01)00252-9 Google Scholar
  12. Carracedo J, Day S, Guillou H, Pérez Torrado F (1999) Giant quaternary landslides in the evolution of La Palma and El Hierro, Canary Islands. J Volcanol Geotherm Res 94:169–190.  https://doi.org/10.1016/S0377-0273(99)00102-X Google Scholar
  13. Casillas R, Fernández C, Colmenero J, De La Nuez J, García-Navarro E, Martín M (2010) Deformation structures associated with the Tazo landslide (La Gomera, Canary Islands). Bull Volcanol 72:945–960.  https://doi.org/10.1007/s00445-010-0373-8 Google Scholar
  14. Chaytor J, Ten Brink U, Solow A, Andrews B (2009) Size distribution of submarine landslides along the U.S. Atlantic margin. Mar Geol 264:16–27.  https://doi.org/10.1016/j.margeo.2008.08.007 Google Scholar
  15. Clouard V, Bonneville A (2004) Submarine landslides in French Polynesia. In: Hekinian R, Stoffers P, Cheminée J-L (eds) Oceanic hotspots: intraplate submarine magmatism and tectonism. Springer-Verlag, Heidelberg, pp 209–238.  https://doi.org/10.1007/978-3-642-18782-7_7 Google Scholar
  16. Clouard V, Bonneville A, Gillot P-Y (2001) A giant landslide on the southern flank of Tahiti Island, French Polynesia. Geophys Res Lett 28:2253–2256.  https://doi.org/10.1029/2000GL012604 Google Scholar
  17. Coombs M, White S, Scholl D (2007) Massive edifice failure at Aleutian arc volcanoes. Earth Planet Sci Lett 256:403–418.  https://doi.org/10.1016/j.epsl.2007.01.030 Google Scholar
  18. Costa A, Marques F, Hildenbrand A, Sibrant A, Catita C (2014) Large scale catastrophic flank collapses in a steep volcanic ridge: the Pico-Faial ridge, Azores triple junction. J Volcanol Geotherm Res 272:111–125.  https://doi.org/10.1016/j.jvolgeores.2014.01.002 Google Scholar
  19. Coussens M, Wall-Palmer D, Talling P, Watt S, Cassidy M, Jutzeler M, Clare M, Hunt J, Manga M, Gernon T, Palmer M, Hatter S, Boudon G, Endo D, Fujinawa A, Hatfield R, Hornbach M, Ishizuka O, Kataoka K, Le Friant A, Maeno F, McCanta M, Stinton A (2016) The relationship between eruptive activity, flank collapse, and sea level at volcanic islands: a long term (>1 Ma) record offshore Montserrat, Lesser Antilles. Geochem Geophys Geosyst 17:2591–2611.  https://doi.org/10.1002/2015GC006053 Google Scholar
  20. Crosta G, Frattini P, Valbuzzi E, De Blasio F (2018) Introducing a new inventory of large Martian landslides. Earth Space Sci 5:89–119.  https://doi.org/10.1002/2017EA000324 Google Scholar
  21. Crutchley G, Kopp H (2018) Reflection and refraction seismic methods. In: Micallef A, Krastel S, Savini A (eds) Submarine geomorphology. Springer, Cham, pp 43–62.  https://doi.org/10.1007/978-3-319-57852-1_4 Google Scholar
  22. Dade W, Huppert H (1998) Long runout rockfalls. Geology 26:803–806.  https://doi.org/10.1130/0091-7613(1998)026<0803:LRR>2.3.CO;2 Google Scholar
  23. Dávila Harris P, Branney M, Storey M (2011) Large eruption triggered ocean island landslide at Tenerife: onshore record and long term effects on hazardous pyroclastic dispersal. Geology 39:951–954.  https://doi.org/10.1130/G31994.1 Google Scholar
  24. Day S, Carracedo J, Guillou H (1997) Age and geometry of an aborted rift flank collapse: the San Andres fault system, El Hierro, Canary Islands. Geol Mag 134:523–537.  https://doi.org/10.1017/S0016756897007243 Google Scholar
  25. Day S, Llanes P, Silver E, Hoffmann G, Ward S, Driscoll N (2015) Submarine landslide deposits of the historical lateral collapse of Ritter Island, Papua New Guinea. Mar Pet Geol 67:419–438.  https://doi.org/10.1016/j.marpetgeo.2015.05.017 Google Scholar
  26. De Longueville B, Luraschi G, Smits P, Peedell S, De Groeve T (2010) Citizens as sensors for natural hazards: a VBI integration workflow. Geomatica 64:41–59Google Scholar
  27. Deplus C, Le Friant A, Boudon G, Komorowski J-C, Villemant B, Harford C, Ségoufin J, Cheminée J-L (2001) Submarine evidence for large scale debris avalanches in the Lesser Antilles arc. Earth Planet Sci Lett 192:145–157.  https://doi.org/10.1016/S0012-821X(01)00444-7 Google Scholar
  28. EMODNET (2019) European Marine Observation and Data Network. http://www.emodnet.eu/geoviewer. Accessed 20 June 2019
  29. Fiorucci F, Cardinali M, Carlà R, Rossi M, Mondini A, Santurri L, Ardizzone F, Guzzetti F (2011) Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology 129:59–70.  https://doi.org/10.1016/j.geomorph.2011.01.013 Google Scholar
  30. Froude M, Petley D (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181.  https://doi.org/10.5194/nhess-2018-49 Google Scholar
  31. Gee M, Watts A, Masson D, Mitchell N (2001) Landslides and the evolution of El Hierro in the Canary Islands. Mar Geol 177:271–293.  https://doi.org/10.1016/S0025-3227(01)00153-0 Google Scholar
  32. Georgiopoulou A (2018) Seafloor sediment and rock sampling. In: Micallef A, Krastel S, Savini A (eds) Submarine geomorphology. Springer, Cham, pp 75–92.  https://doi.org/10.1007/978-3-319-57852-1_6 Google Scholar
  33. GMRT (2019) Global Multi Resolution Topography v 3.4. http://www.marine-geo.org/tools/GMRTMapTool. Accessed 20 June 2019
  34. Guzzetti F, Mondini A, Cardinali M, Fiorucci F, Santangelo M, Chang K-T (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112:42–66.  https://doi.org/10.1016/j.earscirev.2012.02.001 Google Scholar
  35. Hampton M, Lee J, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59.  https://doi.org/10.1029/95RG03287 Google Scholar
  36. Hildenbrand A, Gillot P-Y, Bonneville A (2006) Offshore evidence for a huge landslide of the northern flank of Tahiti-Nui (French Polynesia). Geochem Geophys Geosyst 7:Q03006.  https://doi.org/10.1029/2005GC001003 Google Scholar
  37. Holcomb R, Searle R (1991) Large landslides from oceanic volcanoes. Mar Geotechnol 10:19–32.  https://doi.org/10.1080/10641199109379880 Google Scholar
  38. Hooft E, Nomikou P, Toomey D, Lampridou D, Getz C, Christopoulou M-E, O’Hara D, Arnoux G, Bodmer M, Gray M, Heath B, Vanderbeek B (2017) Backarc tectonism, volcanism, and mass wasting shape seafloor morphology in the Santorini-Christiana-Amorgos region of the Hellenic volcanic arc. Tectonophysics 712-713:396–414.  https://doi.org/10.1016/j.tecto.2017.06.005 Google Scholar
  39. Hughes Clark J (2018) Multibeam echosounders. In: Micallef A, Krastel S, Savini A (eds) Submarine geomorphology. Springer, Cham, pp 25–41.  https://doi.org/10.1007/978-3-319-57852-1_3 Google Scholar
  40. Hunt J, Wynn R, Masson D, Talling P, Teagle D (2011) Sedimentological and geochemical evidence for multistage failure of volcanic island landslides: a case study from Icod landslide on north Tenerife, Canary Islands. Geochem Geophys Geosyst 12:Q12007.  https://doi.org/10.1029/2011GC003740 Google Scholar
  41. Hunt J, Talling P, Clare M, Jarvis I, Wynn R (2014) Long term (17 Ma) turbidite record of the timing and frequency of large flank collapses of the Canary Islands. Geochem Geophys Geosyst 15:3322–3345.  https://doi.org/10.1002/2014GC005232 Google Scholar
  42. Jakobsson M (2017) Roadmap for future ocean floor mapping. The Nippon Foundation - General Bathymetric Chart of the Oceans - Seabed 2030. https://seabed2030.gebco.net. Accessed 20 June 2019
  43. Katz O, Reuven E, Aharonov E (2015) Submarine landslides and fault scarps along the eastern Mediterranean Israeli continental slope. Mar Geol 369:100–115.  https://doi.org/10.1016/j.margeo.2015.08.006 Google Scholar
  44. Kirschbaum D, Adler R, Hong Y, Hill S, Lerner-Lam A (2010) A global landslide catalog for hazard applications: method, results, and limitations. Nat Hazards 52:561–575.  https://doi.org/10.1007/s11069-009-9401-4 Google Scholar
  45. Klaucke I (2018) Sidescan sonar. In: Micallef A, Krastel S, Savini A (eds) Submarine geomorphology. Springer, Cham, pp 13–24.  https://doi.org/10.1007/978-3-319-57852-1_2 Google Scholar
  46. Korup O, Clague J, Reginald L, Hewitt K, Strom A, Weidinger J (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261:578–589.  https://doi.org/10.1016/j.epsl.2007.07.025 Google Scholar
  47. Krastel S, Schmincke H-U, Jacobs C, Rihm R, Le Bas T, Alibés B (2001) Submarine landslides around the Canary Islands. J Geophys Res Solid Earth 106:3977–3997.  https://doi.org/10.1029/2000JB900413 Google Scholar
  48. Larsen I, Montgomery D, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3:247–251.  https://doi.org/10.1038/ngeo776 Google Scholar
  49. Le Bas T, Masson D, Holtom R, Grevemeyer I (2007) Slope failures of the flanks of the southern Cape Verde Islands. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine mass movements and their consequences. Springer, Dordrecht, pp 337–345.  https://doi.org/10.1007/978-1-4020-6512-5_35 Google Scholar
  50. Leat P, Tate A, Tappin D, Day S, Owen M (2010) Growth and mass wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, revealed by new multibeam mapping. Mar Geol 275:110–126.  https://doi.org/10.1016/j.margeo.2010.05.001 Google Scholar
  51. Legros F (2002) The mobility of long runout landslides. Eng Geol 63:301–331.  https://doi.org/10.1016/S0013-7952(01)00090-4 Google Scholar
  52. León R, Somoza L, Urgeles R, Medialdea T, Ferrer M, Biain A, García-Crespo J, Mediato J, Galindo I, Yepes J, González F, Gimenez-Moreno J (2017) Multi-event oceanic island landslides: new onshore-offshore insights from El Hierro Island, Canary archipelago. Mar Geol 393:156–175.  https://doi.org/10.1016/j.margeo.2016.07.001 Google Scholar
  53. Lipman P, Normark W, Moore J, Wilson J, Gutmacher C (1988) The giant submarine Alika debris slide, Mauna Loa, Hawaii. J Geophys Res Solid Earth 93:4279–4299.  https://doi.org/10.1029/JB093iB05p04279 Google Scholar
  54. Lucchitta B (1979) Landslides in Vallis Marineris, Mars. J Geophys Res Solid Earth 84:8097–8113.  https://doi.org/10.1029/JB084iB14p08097 Google Scholar
  55. Masson D, Watts A, Gee M, Urgeles R, Mitchell N, Le Bas T, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth-Sci Rev 57:1–35.  https://doi.org/10.1016/S0012-8252(01)00069-1 Google Scholar
  56. Masson D, Le Bas T, Grevemeyer I, Weinrebe W (2008) Flank collapse and large scale landsliding in the Cape Verde Islands, off West Africa. Geochem Geophys Geosyst 9:Q07015.  https://doi.org/10.1029/2008GC001983 Google Scholar
  57. McGuire W (1996) Volcano instability: a review of contemporary themes. In: McGuire W, Jones A, Neuberg J (eds) Volcano instability on earth and other planets, Geol Soc Lond Spec Publ, vol 110, pp 1–23.  https://doi.org/10.1144/GSL.SP.1996.110.01.01 Google Scholar
  58. McMurtry G, Watts P, Fryer G, Smith J, Imamura F (2004) Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian islands. Mar Geol 203:219–233.  https://doi.org/10.1016/S0025-3227(03)00306-2 Google Scholar
  59. Moore J, Clague D, Holcomb R, Lipman P, Normark W, Torresan M (1989) Prodigious submarine landslides on the Hawaiian ridge. J Geophys Res Solid Earth 94:17465–17484.  https://doi.org/10.1029/JB094iB12p17465 Google Scholar
  60. Moore J, Normark W, Holcomb R (1994) Giant Hawaiian underwater landslides. Science 264:46–47.  https://doi.org/10.1126/science.264.5155.46 Google Scholar
  61. Normark W, Moore J, Torresan M (1993) Giant volcano related landslides and the development of the Hawaiian islands. In: Schwab W, Lee H, Twichell D (eds) Submarine landslides: selected studies in the U.S. Exclusive Economic Zone, vol 2002. U.S. Geological Survey Bulletin, pp 184–196Google Scholar
  62. Oehler J-F, Lénat J-F, Labazuy P (2008) Growth and collapse of the Reunion Island volcanoes. Bull Volcanol 70:717–742.  https://doi.org/10.1007/s00445-007-0163-0 Google Scholar
  63. Omira R, Quartau R, Ramalho I, Baptista M, Mitchell N (2016) The tsunami effects of a collapse of a volcanic island on a semienclosed basin. In: Duarte J, Schellart W (eds) Plate boundaries and natural hazards. Wiley, Hoboken, pp 271–287.  https://doi.org/10.1002/9781119054146.ch13 Google Scholar
  64. Pánek T, Klimeš J (2016) Temporal behavior of deep seated gravitational slope deformations: a review. Earth-Sci Rev 156:14–38.  https://doi.org/10.1016/j.earscirev.2016.02.007 Google Scholar
  65. Quartau R, Ramalho R, Madeira J, Santos R, Rodrigues A, Roque C, Carrara G, Brum da Silveira A (2018) Gravitational, erosional, and depositional processes on volcanic ocean islands: insights from the submarine morphology of Madeira archipelago. Earth Planet Sci Lett 482:288–299.  https://doi.org/10.1016/j.epsl.2017.11.003 Google Scholar
  66. Ramalho R, Winckler G, Madeira J, Helffrich G, Hipólito A, Quartau R, Adena K, Schaefer J (2015) Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Sci Adv 1:e1500456.  https://doi.org/10.1126/sciadv.1500456 Google Scholar
  67. Robbins S, Hynek B (2012) A new global database of Mars impact craters ≥ 1 km: 1. Database creation, properties, and parameters. J Geophys Res Planets 117:E05004.  https://doi.org/10.1029/2011JE003966 Google Scholar
  68. Romagnoli C, Kokelaar P, Casalbore D, Chiocci F (2009) Lateral collapses and active sedimentary processes on the northwestern flank of Stromboli Volcano, Italy. Mar Geol 265:101–119.  https://doi.org/10.1016/j.margeo.2009.06.013 Google Scholar
  69. Rybář J (1968) Engineering geological maps of landslide areas. Abh Zent Geol Inst 14:109–114Google Scholar
  70. Scheidegger A (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236.  https://doi.org/10.1007/BF01301796 Google Scholar
  71. Sibrant A, Hildenbrand A, Marques F, Weiss B, Boulesteix T, Hübscher C, Lüdmann T, Costa A, Catalão J (2015) Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira rift, Azores). J Volcanol Geotherm Res 301:90–106.  https://doi.org/10.1016/j.jvolgeores.2015.04.011 Google Scholar
  72. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197.  https://doi.org/10.1016/0377-0273(84)90002-7 Google Scholar
  73. Silver E, Day S, Ward S, Hoffmann G, Llanes P, Driscoll N, Appelgate B, Saunders S (2009) Volcano collapse and tsunami generation in the Bismarck volcanic arc, Papua New Guinea. J Volcanol Geotherm Res 186:210–222.  https://doi.org/10.1016/j.jvolgeores.2009.06.013 Google Scholar
  74. Smith R, Shaw H, Luedke R, Russell S (1978) Comprehensive tables giving physical data and thermal energy estimates for young igneous systems of the United States. USGS Open File Report 78-925.  https://doi.org/10.3133/ofr78925
  75. Smith J, Malahoff A, Shor A (1999) Submarine geology of the Hilina slump and morphostructural evolution of Kilauea volcano, Hawaii. J Volcanol Geotherm Res 94:59–88.  https://doi.org/10.1016/s0377-0273(99)00098-0 Google Scholar
  76. SRTM (2019) Shuttle Radar Topography Mission, v 3.0. https://www2.jpl.nasa.gov/srtm. Accessed 20 June 2019
  77. Strozzi T, Klimeš J, Frey H, Caduff R, Huggel C, Wegmüller U, Rapre A (2018) Satellite SAR interferometry for the improved assessment of the state of activity of landslides: a case study from the cordilleras of Peru. Remote Sens Environ 217:111–125.  https://doi.org/10.1016/j.rse.2018.08.014 Google Scholar
  78. Ui T, Takarada S, Yoshimoto M (2000) Debris Avalanches. In: Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 617–626Google Scholar
  79. Urgeles R, Masson D, Canals M, Watts A, Le Bas T (1999) Recurrent large scale landsliding on the west flank of La Palma, Canary islands. J Geophys Res Solid Earth 104:25331–25348.  https://doi.org/10.1029/1999JB900243 Google Scholar
  80. Urlaub M, Talling P, Masson D (2013) Timing and frequency of large submarine landslides: implications for understanding triggers and future geohazard. Quat Sci Rev 72:63–82.  https://doi.org/10.1016/j.quascirev.2013.04.020 Google Scholar
  81. Voight B, Elsworth D (1997) Failure of volcano slopes. Géotechnique 47:1–31.  https://doi.org/10.1680/geot.1997.47.1.1 Google Scholar
  82. Waythomas C, Watts P, Walder J (2006) Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine volcano, Alaska. Nat Hazards Earth Syst Sci 6:671–685.  https://doi.org/10.5194/nhess-6-671-2006 Google Scholar
  83. Yin J, Lampert A, Cameron M, Robinson B, Power R (2012) Using social media to enhance emergency situation awareness. IEEE Intell Syst 27:52–59.  https://doi.org/10.1109/MIS.2012.6 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Rock Structure & Mechanics, v.v.i.Czech Academy of SciencesPrague 8Czech Republic
  2. 2.Institute of Hydrogeology, Engineering Geology, & Applied GeophysicsCharles University in PraguePrague 2Czech Republic

Personalised recommendations