A multi-approach rockfall hazard assessment on a weathered granite natural rock slope

Abstract

After a recent forest fire, a weathered granite rock slope located in the northwest of Spain may become increasingly susceptible to rockfalls. This study presents a multi-approach assessment of rockfall hazard, with some features deserving particular attention. First, the geomorphological context represented by a weathered rock mass with multiple dispersed blocks presenting various potential instability mechanisms. Secondly, the presence of a hillfort behind the slope and a small village at its toe, limiting the available solutions for rockfall protection. Finally, the combination of different remote sensing techniques (unmanned aircraft system topography and light detection and ranging) with a semi-automatic geostructural analysis has been successfully applied to obtain both a 3D point cloud of the wide area under study in addition to an estimation of mean block volume for rockfall simulations. Additionally, the design and implementation of a protective measure (rock dynamic barrier) have been addressed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40:455–471. https://doi.org/10.1016/S1365-1609(03)00021-2

    Article  Google Scholar 

  2. Alejano LR, Pons B, Bastante FG, Alonso E, Stockhausen HW (2007) Slope geometry design as a means for controlling rockfalls in quarries. Int J Rock Mech Min Sci 44:903–921. https://doi.org/10.1016/j.ijrmms.2007.02.001

    Article  Google Scholar 

  3. Alejano LR, Stockhausen HW, Alonso E, Bastante FG, Ramírez Oyanguren P (2008) ROFRAQ: a statistics-based empirical method for assessing accident risk from rockfalls in quarries. Int J Rock Mech Min Sci 45:1252–1272. https://doi.org/10.1016/J.IJRMMS.2008.01.003

    Article  Google Scholar 

  4. Alejano LR, García-Cortés S, García-Bastante F, Martínez-Alegría R (2013) Study of a rockfall in a limy conglomerate canyon (Covarrubias, Burgos, N. Spain). Environ Earth Sci 70:2703–2717. https://doi.org/10.1007/s12665-013-2327-x

    Article  Google Scholar 

  5. Alejano L, Carranza-Torres C, Giani G, Arzúa J (2015) Study of the stability against toppling of rock blocks with rounded edges based on analytical and experimental approaches. 195:172–184. https://doi.org/10.1016/j.enggeo.2015.05.030

  6. Alejano LR, Muralha J, Ulusay R, Li CC, Pérez-Rey I, Karakul H, Chryssanthakis P, Aydan Ö, Martínez J, Zhang N (2017) A benchmark experiment to assess factors affecting tilt test results for sawcut rock surfaces. Rock Mech Rock Eng 50:2547–2562. https://doi.org/10.1007/s00603-017-1271-6

    Article  Google Scholar 

  7. Alejano L, Sánchez–Alonso C, Pérez–Rey I et al (2018) Block toppling stability in the case of rock blocks with rounded edges. Eng Geol 234:192–203. https://doi.org/10.1016/J.ENGGEO.2018.01.010

    Article  Google Scholar 

  8. Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54. https://doi.org/10.1007/BF01261801

    Article  Google Scholar 

  9. Chaki S, Takarli M, Agbodjan WP (2008) Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater 22:1456–1461. https://doi.org/10.1016/j.conbuildmat.2007.04.002

    Article  Google Scholar 

  10. Chau KT, Wong RHC, Liu J, Lee CF (2003) Rockfall hazard analysis for Hong Kong based on rockfall inventory. Rock Mech Rock Eng 36:383–408. https://doi.org/10.1007/s00603-002-0035-z

    Article  Google Scholar 

  11. Dewez TJB, Girardeau-Montaut D, Allanic C, Rohmer J (2016) Facets: a cloudcompare plugin to extract geological planes from unstructured 3D point clouds. ISPRS - Int Arch Photogramm Remote Sens Spat Inf Sci XLI-B5:799–804. https://doi.org/10.5194/isprs-archives-XLI-B5-799-2016

    Article  Google Scholar 

  12. Ferrari F, Thoeni K, Giacomini A, Lambert C (2016) A rapid approach to estimate the rockfall energies and distances at the base of rock cliffs. Georisk Assess Manag Risk Eng Syst Geohazards 10:179–199. https://doi.org/10.1080/17499518.2016.1139729

    Article  Google Scholar 

  13. Ferrari F, Giacomini A, Thoeni K, Lambert C (2017) Qualitative evolving rockfall hazard assessment for highwalls. Int J Rock Mech Min Sci 98:88–101. https://doi.org/10.1016/J.IJRMMS.2017.07.013

    Article  Google Scholar 

  14. Ferrero A, Migliazza M, Roncella R, Segalini A (2011) Rock cliffs hazard analysis based on remote geostructural surveys: the Campione del Garda case study (Lake Garda, Northern Italy). Geomorphology 125:457–471. https://doi.org/10.1016/j.geomorph.2010.10.009

    Article  Google Scholar 

  15. Ferrero A, Migliazza M, Pirulli M, Umili G (2016) Some open issues on rockfall hazard analysis in fractured rock mass: problems and prospects. Rock Mech Rock Eng 49:3615–3629. https://doi.org/10.1007/s00603-016-1004-2

    Article  Google Scholar 

  16. Franklin J, Wood D, Senior S, Blair J (2012) RHRON: Ontario Rockfall Hazard Rating System - field procedures manual. Soils and aggregates section, Materials Engineering and Research Office, Ontario Ministry of Transportation

  17. Geobrugg (2018) Geobrugg. www.geobrugg.com. Accessed 2 May 2018

  18. Giani G (1992) Rock slope stability analysis. CRC Press, Boca Raton

  19. Giani GP, Giacomini A, Migliazza M, Segalini A (2004) Experimental and theoretical studies to improve rock fall analysis and protection work design. Rock Mech Rock Eng 37:369–389. https://doi.org/10.1007/s00603-004-0027-2

    Article  Google Scholar 

  20. González-Jorge H, Puente I, Roca D, Martínez-Sánchez J, Conde B, Arias P (2016) UAV photogrammetry application to the monitoring of rubble mound breakwaters. J Perform Constr Facil 30:4014194. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000702

    Article  Google Scholar 

  21. González-Jorge H, Rodríguez-Gonzálvez P, Shen Y, Lagüela S, Díaz-Vilariño L, Lindenbergh R, González-Aguilera D, Arias P (2018) Metrological intercomparison of six terrestrial laser scanning systems. IET Sci Meas Technol 12(4):218–222

    Article  Google Scholar 

  22. Hall AM, Phillips WM (2006) Glacial modification of granite tors in the Cairngorms, Scotland. J Quat Sci 21:811–830. https://doi.org/10.1002/jqs.1003

    Article  Google Scholar 

  23. Hencher SR (2012) Practical engineering geology. CRC Press, Boca Raton

    Book  Google Scholar 

  24. Hencher SR, Lee SG, Carter TG, Richards LR (2011) Sheeting joints: characterisation, shear strength and engineering. Rock Mech Rock Eng 44:1–22. https://doi.org/10.1007/s00603-010-0100-y

    Article  Google Scholar 

  25. Hoek E (2007) Analysis of rockfall hazards. In: Practical Rock Engineering. RocScience, pp. 141-165. Available at: https://www.rocscience.com/learning/hoeks-corner

  26. Hoek E, Bray J (1974) Rock slope engineering. Institution of Mining and Metallurgy, London

    Google Scholar 

  27. Hu J, Sun Q, Pan X (2018) Variation of mechanical properties of granite after high-temperature treatment. Arab J Geosci 11:43. https://doi.org/10.1007/s12517-018-3395-8

    Article  Google Scholar 

  28. Hungr O, Evans S (1989) Engineering aspects of rockfall hazard in Canada. Geological Survey of Canada

  29. Ietto F, Perri F, Cella F (2018) Weathering characterization for landslides modeling in granitoid rock masses of the Capo Vaticano promontory (Calabria, Italy). Landslides 15:43–62. https://doi.org/10.1007/s10346-017-0860-5

    Article  Google Scholar 

  30. IGME (1981) Geological map of Spain. Sheet 261 (4-12): Tuy. MAGNA 50k (2nd Ser)

  31. IGN (2015) Seismic hazard map of Spain (return period of 475 years)

  32. ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds). ISRM Turkish National Group

  33. Jaboyedoff M, Baillifard F, Bardou E, Girod F (2004) The effect of weathering on Alpine rock instability. Q J Eng Geol Hydrogeol - Q J ENG GEOL HYDROGEOL 37:95–103. https://doi.org/10.1144/1470-9236/03-046

    Article  Google Scholar 

  34. Krautblatter M, Dikau R (2007) Towards a uniform concept for the comparison and extrapolation of rockwall retreat and rockfall supply. Geogr Ann Ser A, Phys Geogr 89:21–40. https://doi.org/10.1111/j.1468-0459.2007.00305.x

    Article  Google Scholar 

  35. Linton DL (1955) The problem of tors. Geogr J 121:470–487

    Article  Google Scholar 

  36. Maccaferri (2018) Maccaferri. https://www.maccaferri.com/es/en/solutions/dynamic-barriers/. Accessed 2 May 2018

  37. Matas G, Lantada N, Corominas J, Gili JA, Ruiz-Carulla R, Prades A (2017) RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls. Landslides 14:1565–1578. https://doi.org/10.1007/s10346-017-0818-7

    Article  Google Scholar 

  38. Matasci B, Stock GM, Jaboyedoff M, Carrea D, Collins BD, Guérin A, Matasci G, Ravanel L (2018) Assessing rockfall susceptibility in steep and overhanging slopes using three-dimensional analysis of failure mechanisms. Landslides 15:859–878. https://doi.org/10.1007/s10346-017-0911-y

    Article  Google Scholar 

  39. Mölk M, Poisel R, Weilbold J, Angerer H (2008) Rockfall rating systems: is there a comprehensive method for hazard zoning in populated areas? In: Proceedings of the 11th Interpraevent Congress. Dornbirn, Austria, 2:207–218

  40. Palmer J, Neilson RA (1962) The origin of granite tors on Dartmoor, Devonshire. Proc Yorks Geol Soc 33:315–340. https://doi.org/10.1144/pygs.33.3.315

    Article  Google Scholar 

  41. Palmstrom A (2005) Measurements of and correlations between block size and rock quality designation (RQD). Tunn Undergr Sp Technol 20:362–377. https://doi.org/10.1016/j.tust.2005.01.005

    Article  Google Scholar 

  42. Paramassi (2018) https://www.paramassi.es/. Accessed 2 May 2018

  43. Pierson L, Davis S, van Vickle R (1990) Rockfall hazard rating system implementation manual. Federal Highway Administration report FHWA-OR-EG-90-01

  44. Pierson L, Gullixson C, Chassie R (2001) Rockfall catchment area design guide. Final Report (Metric Edition)

  45. Potsch M, Schubert W, Gaich A (2006) Kinematical analyses of rock blocks supported by 3D imaging. Golden Rocks 2006, 41st U.S. Symp. Rock Mech. 11

  46. Riquelme A, Abellán A, Tomás R, Jaboyedoff M (2014a) A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput Geosci 68:38–52. https://doi.org/10.1016/j.cageo.2014.03.014

    Article  Google Scholar 

  47. Riquelme A, Abellán A, Tomás R, Jaboyedoff M (2014b) Discontinuity Set Extractor (DSE) [Computer Software]. Retrieved from: https://personal.ua.es/es/ariquelme/discontinuity-set-extractor-software.html

  48. Riquelme AJ, Abellán A, Tomás R (2015) Discontinuity spacing analysis in rock masses using 3D point clouds. Eng Geol 195:185–195. https://doi.org/10.1016/j.enggeo.2015.06.009

    Article  Google Scholar 

  49. Ritchie AM (1963) Evaluation of rockfall and its control. Highw Res Rec 17:13–28

    Google Scholar 

  50. Rocscience (2016) RocFall 6.0 [Computer Software]. Retrieved from: https://www.rocscience.com/

  51. Royán MJ, Abellán A, Jaboyedoff M, Vilaplana JM, Calvet J (2014) Spatio-temporal analysis of rockfall pre-failure deformation using terrestrial LiDAR. Landslides 11:697–709. https://doi.org/10.1007/s10346-013-0442-0

    Article  Google Scholar 

  52. Ryan, TM, Pryor, PR (2000) Designing catch benches and interramp slopes. In: Hustrulid WA, McCarter MK, Van Zyl DJA (eds), Slope Stability in Surface Mining, SME, Colorado, pp. 27–38.

  53. Stead D, Wolter A (2015) A critical review of rock slope failure mechanisms: the importance of structural geology. J Struct Geol 74:1–23. https://doi.org/10.1016/j.jsg.2015.02.002

    Article  Google Scholar 

  54. Sturzenegger M, Stead D, Elmo D (2011) Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Eng Geol 119:96–111. https://doi.org/10.1016/J.ENGGEO.2011.02.005

    Article  Google Scholar 

  55. Twidale C, Vidal-Romaní J (2005) Landforms and geology of granite terrains. CRC Press (Taylor and Francis Group), Boca Raton

    Book  Google Scholar 

  56. Viles HA (2013) Linking weathering and rock slope instability: non-linear perspectives. Earth Surf Process Landf 38:62–70. https://doi.org/10.1002/esp.3294

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ignacio Pérez-Rey.

Electronic supplementary material

ESM 1

(PDF 1.76 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez-Rey, I., Riquelme, A., González-deSantos, L.M. et al. A multi-approach rockfall hazard assessment on a weathered granite natural rock slope. Landslides 16, 2005–2015 (2019). https://doi.org/10.1007/s10346-019-01208-5

Download citation

Keywords

  • Rockfall
  • Weathering
  • Granite
  • DSE
  • 3D point cloud