Landslides induced by the 2010 Chile megathrust earthquake: a comprehensive inventory and correlations with geological and seismic factors

Abstract

The 2010 Mw = 8.8 Maule earthquake, which occurred in the subduction contact between the Nazca and the South American tectonic plates off the coast of Chile, represents an important opportunity to improve understanding of the distribution and controls for the generation of landslides triggered by large megathrust earthquakes in subduction zones. This paper provides the analysis of the comprehensive landslide inventory for the Maule earthquake between 32.5° S and 38.5° S. In total, 1226 landslides were mapped over a total area of c. 120,500 km2, dominantly disrupted slides. The total landslide volume is c. 10.6 Mm3. The events are unevenly distributed in the study area, the majority of landslides located in the Principal Andean Cordillera and a very constrained region near the coast on the Arauco Peninsula, forming landslide clusters. Statistical analysis of our database suggests that relief and lithology are the main geological factors controlling coseismic landslides, whilst the seismic factor with higher correlation with landslide occurrence is the ratio between peak horizontal and peak vertical ground accelerations. The results and comparison with other seismic events elsewhere suggest that the number of landslides generated by megathrust earthquakes is lower than events triggered by shallow crustal earthquakes by at least one or two orders of magnitude, which is very important to consider in future seismic landslide hazard analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Annu Rev Earth Planet Sci 25(1):139–174

    Article  Google Scholar 

  2. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334

    Article  Google Scholar 

  3. Astroza M, Ruiz S, Astroza R (2012) Damage assessment and seismic intensity analysis of the 2010 (Mw 8.8) Maule earthquake. Earthquake Spectra 28(S1):S145–S164

    Article  Google Scholar 

  4. Barrientos SE (2010) Terremoto (M= 8.8) del 27 de febrero de 2010 en Chile. Rev Asoc Geol Argent 67(3):412–420

    Google Scholar 

  5. Bird P (2003) An updated digital model of plate boundaries. GeochemGeophysGeosyst 4(1):1027

    Google Scholar 

  6. Boroschek R, Contreras V, Kwak DY, Stewart JP (2012) Strong ground motion attributes of the 2010 Mw 8.8 Maule, Chile, earthquake. Earthquake Spectra 28(S1):S19–S38

    Article  Google Scholar 

  7. Brain MJ, Rosser NJ, Norman EC, Petley DN (2014) Are microseismic ground displacements a significant geomorphic agent? Geomorphology 207:161–173

    Article  Google Scholar 

  8. Campos J, Hatzfeld D, Madariaga R, Lopez G, Kausel E, Zollo A, Barrientos S, Lyon-Caen H (2002) The 1835 seismic gap in South Central Chile. Phys Earth Planet Inter 132:177–195

    Article  Google Scholar 

  9. Charrier R, Ramos VA, Tapia F, Sagripanti L (2015) Tectono-stratigraphic evolution of the Andean Orogen between 31 and 37° S (Chile and Western Argentina). Geological Society Special Publications, London, pp 13–61

    Google Scholar 

  10. Cisternas A (2011) El país más sísmico del mundo. Revista Anales Séptima Serie

  11. Dai FC, Xu C, Yao X, Xu L, Tu XB, Gong QM (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake. China JAsian Earth Sci 40(4):883–895

    Google Scholar 

  12. Delouis B, Nocquet JM, Vallée M (2010) Slip distribution of the February 27, 2010 Mw = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and Broadband teleseismic data. Geophys Res Lett 37(17):L17305. https://doi.org/10.1029/2010GL043899

    Article  Google Scholar 

  13. Densmore A, Hovius N (2000) Topographic fingerprints of bedrock landslides. Geology 28(4):371–374

    Article  Google Scholar 

  14. Escobar P (2013) Inventario de remociones en masa desencadenadas por el sismo del 27 de febrero de 2010 en Chile central. Universidad de Chile, Departamento de Geología, Memoria de título

    Google Scholar 

  15. Gorum T, Fan X, van Westen CJ, Huang RQ, Xu Q, Tang C, Wang G (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133:152–167. https://doi.org/10.1016/j.geomorph.2010.12.030

    Article  Google Scholar 

  16. Havenith HB, Torgoev A, Braun A, Schlögel R, Micu M (2016) A new classification of earthquake-induced landslide event sizes based on seismotectonic, topographic, climatic and geologic factors. Geoenvironmental Disasters 3(1):6

    Article  Google Scholar 

  17. Huang CC, Lee YH, Liu HP, Keefer DK, Jibson RW (2001) Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake. Bull Seismol Soc Am 91(5):953–958

    Article  Google Scholar 

  18. Idini B, Rojas F, Ruiz S, Pastén C (2017) Ground motion prediction equations for the Chilean subduction zone. Bull Earthq Eng 15(5):1853–1880

    Article  Google Scholar 

  19. Isacks BL (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J Geophys Res Solid Earth 93(B4):3211–3231

    Article  Google Scholar 

  20. Jibson RW, Harp EL, Schulz W, Keefer DF (2006) Large rock avalanches triggered by the M 7.9 Denali fault, Alaska, earthquake of 3 November 2002. Eng Geol 83:144–160

    Article  Google Scholar 

  21. Jordan TE, Isacks B, Allmendinger R, Brewer J, Ramos V, Ando C (1983) Andean tectonics related to geometry of the subducted Nazca plate. Geol Soc Am Bull 94:341–361

    Article  Google Scholar 

  22. Kamp U, Growley BJ, Khattak GA, Owen LA (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101(4):631–642

    Article  Google Scholar 

  23. Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421

    Article  Google Scholar 

  24. Keefer DK (2000) Statistical analysis of an earthquake-induced landslide distribution—the 1989 Loma Prieta, California event. Eng Geol 58(3):231–249

    Article  Google Scholar 

  25. Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3(4):247–251

    Article  Google Scholar 

  26. Lay T, Ammon CJ, Kanamori H, Koper KD, Sufri O, Hutko AR (2010) Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake. Geophys Res Lett 37(13):L13301. https://doi.org/10.1029/2010GL043379

    Article  Google Scholar 

  27. Lorito S, Romano F, Atzori F, Tong X, Avallone A, McCloskey J, Cocco M, Boshi E, Piatanesi A (2011) Limited overlap between the seismic gap and co-seismic slip of the great 2010 Chilean earthquake. Nature Geoscience Letters 4(3):173–177

    Article  Google Scholar 

  28. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004a) Landslide inventories and their statistical properties. Earth Surf Process Landf 29(6):687–711

    Article  Google Scholar 

  29. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004b) Landslides, earthquakes, and erosion. Earth Planet Sci Lett 229(1–2):45–59

    Article  Google Scholar 

  30. Marc O, Hovius N, Meunier P, Gorum T, Uchida T (2016) A seismologically consistent expression for the total area and volume of earthquake-triggered landsliding. J Geophys Res Earth Surf 121(4):640–663

    Article  Google Scholar 

  31. Mardones M, Rojas J (2012) Procesos de remoción en masa inducidos por el terremoto del 27F de 2010 en la franja costera de la Región del Biobío, Chile. Revista de Geografía Norte Grande 53:57–74

    Article  Google Scholar 

  32. Meunier P, Hovius N, Haines JA (2008) Topographic site effects and the location of earthquake induced landslides. Earth Planet Sci Lett 275:221–232

    Article  Google Scholar 

  33. Moreno M, Klotz J, Melnick D, Echtler H, Bataille K (2008) Active faulting and heterogeneous deformation across a megathrust segment boundary from GPS data, south central Chile (36–39 S). Geochem Geophys Geosyst 12:Q12024

    Google Scholar 

  34. Moya S (2016) Comportamiento monotónico y cíclico de suelos y rocas blandas afectadas por remociones en masa cosísmicas. Universidad de Chile, Departamento de Geología

  35. Moya S, Sepúlveda SA, Serey A, García M (2015) Remociones en masa generadas por el terremoto del Maule del 2010 en la Península de Arauco. In XIV Congreso Geológico de Chile Actas, La Serena

  36. Owen LA, Kamp U, Khattak GA, Harp EL, Keefer DK, Bauer MA (2008) Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94(1):1–9

    Article  Google Scholar 

  37. Pankhurst R, Hervé F (2007) Introduction and overview. The Geological Society of London, pp 1–4

  38. Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6(3):233–248

    Article  Google Scholar 

  39. Qi S, Xu Q, Lan H, Zhang B, Liu J (2010) Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan earthquake. China Engineering Geology 116(1–2):95–108

    Article  Google Scholar 

  40. Rodriguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980-1997. Soil Dyn Earthq Eng 18:325–346

    Article  Google Scholar 

  41. Ruegg JC, Rudloff A, Vigny C, Madariaga R, De Chabalier JB, Campos J, Kausel E, Barrientos S, Dimitrov D (2009) Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Phys Earth Planet Inter 175:78–85

    Article  Google Scholar 

  42. Ruiz S, Madariaga R, Astroza M, Saragoni R, Lancieri M, Vigny C, Campose J (2012) Short-period rupture process of the 2010 Mw 8.8 Maule earthquake in Chile. Earthquake Spectra 28(S1):S1–S18

    Article  Google Scholar 

  43. Saragoni R, y Ruiz S (2012) Implicancias y nuevos desafíos del diseño sísmico de los acelerógramas del Terremoto del 2010, en Mw=8.8: Terremoto en Chile, 27 de febrero 2010. Primera edn, Departamento Ingeniería Civil FCFM Universidad de Chile, pp 127-146

  44. Sato H, Hasegawa H, Fujiwara S, Tobita M, Koarai M, Une H, Iwahashi J (2007) Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landlsides 4:113–122

    Google Scholar 

  45. Sepúlveda SA, Murphy W, Petley DN (2005) Topographic controls on coseismic rock slides during the 1999 Chi-Chi Earthquake, Taiwan. Q J Eng Geol Hydrogeol 38:189–196

    Article  Google Scholar 

  46. Sepúlveda SA, Serey A, Lara M, Pavez A, Rebolledo S (2010) Landslides induced by the 2007 Aysen Fjord earthquake, Chilean Patagonia. Landslides 7(4):483–492

    Article  Google Scholar 

  47. Serey A, Escobar P, Moya S, Sepúlveda SA, Petley D (2017) Landslide inventory of the 2010 Mw 8.8 Maule earthquake, Central Chile. 16th world conference on earthquake 16WCEE 2017: 1873

  48. SERNAGEOMIN (2003) Mapa Geológico de Chile a escala 1:1.000.000: versión digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital N°4

  49. Sheffels BM (1990) Lower bound on the amount of crustal shortening, in the central Bolivian Andes. Geology 18(9):812–815

    Article  Google Scholar 

  50. Soeters R, Van Western CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK and Schuster RL (eds). Landslides, investigation and mitigation. Transportation Research Board, National Research Council, special report 247, National Academy Press, Washington D.C., U.S.A., 129–177

  51. Terzaghi K (1950) Mechanisms of landslides, application of geology to engineering practice. Berkey Volume S Geological Soc. of America

  52. Tong X, Sandwell D, Luttrell K, Brooks B, Bevis M, Shimada M, Foster J, Smalley R, Parra H, Baez JC, Blanco M, Kendrick E, Genrich J, Caccamise D (2010) The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy. Geophys Res Lett 37(24):L24311

    Article  Google Scholar 

  53. Verdugo R, González J, González V, Torres A (2012) Características y efectos del fenómeno de licuefacción. En Mw=8.8: Terremoto en Chile, 27 de febrero 2010. Primera edn., Departamento Ingeniería Civil FCFM Universidad de Chile

  54. Wartman J, Dunham L, Tiwari B, Pradel D (2013) Landslides in Eastern Honshu induced by the 2011 off the Pacific Coast of Tohoku earthquake. Bull Seismol Soc Am 103(2B):1503–1521

    Article  Google Scholar 

  55. Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. EOS Trans Am Geophys Union 79(47):579–579

    Article  Google Scholar 

Download references

Acknowledgments

We thank valuable comments by D.R. Tippin and two anonymous reviewers that allowed improvement of the manuscript. Mapping work collaboration and support by S. Moya, J. Tondreau, C. Apablaza, M. Froude and M. Brain are greatly acknowledged. Figures 3 and 6 were prepared with the Generic Mapping Tools (Wessel and Smith 1998).

Funding

 This work is supported by the RCUK-Conicyt Newton Fund International Cooperation Programme Project NE/N000315/1 “Seismically-induced landslides in Chile: New tools for hazard assessment and disaster prevention” and Fondecyt project 1140317.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alejandra Serey.

Electronic supplementary material

ESM 1

(DOCX 525 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serey, A., Piñero-Feliciangeli, L., Sepúlveda, S.A. et al. Landslides induced by the 2010 Chile megathrust earthquake: a comprehensive inventory and correlations with geological and seismic factors. Landslides 16, 1153–1165 (2019). https://doi.org/10.1007/s10346-019-01150-6

Download citation

Keywords

  • Coseismic landslides
  • Megathrust earthquake
  • Chile