, Volume 16, Issue 4, pp 777–785 | Cite as

Source characteristics and dynamics of the October 2018 Baige landslide revealed by broadband seismograms

  • Zhen Zhang
  • Siming HeEmail author
  • Wei Liu
  • Heng Liang
  • Shuaixing Yan
  • Yu Deng
  • Xiuqiang Bai
  • Zheng Chen
Recent Landslides


The catastrophic Baige landslide occurred at 22:05:36 (Beijing time, UTC+8) on the 10th of October 2018 in Tibet, China. The large and rapid landslide generated strong long-period seismic signals that were recorded by broadband seismic stations. In this study, we inverted the long-period seismic data from five broadband seismic stations at distances of 108 to 255 km from the event to obtain a time series of forces that the landslide exerted on the Earth. Then, we calculated the spectrogram of the vertical component of the seismic signal generated by the event, recorded at the closest broadband seismic station (GZI). This spectrogram, combined with the force-time function and the field investigation, described the dynamic process of the landslide that could be divided into three intervals. For the first interval, assuming that the rockslide can be regarded as a sliding block, we estimated the average slope-parallel acceleration of the sliding materials at 1.08 m/s2, and the average friction coefficient at the base of the rockslide at 0.47. In the second and third intervals, the rockslide had converted to granular debris. The direction and timing of the force correspond to the different points in the sliding path of the granular debris. We used this correlation to estimate the speeds of the granular debris. This study demonstrates that the seismic signal generated by the landslide provides an effective method for estimating the dynamic properties of the landslide.


Baige landslide Spectrogram Long-period seismic signal Force-time function Landslide dynamics 



Waveform data for this study air provided by Data Management Centre of China National Seismic Network at Institute of Geophysics, China Earthquake Administration.

Funding information

This work was supported by the Major Program of the National Natural Science Foundation of China (Grant No. 41790433), the NSFC-ICIMOD Collaborative Project (Grant No. 41661144041), and Key Research and Development Projects of Sichuan Province (2017SZ0041).


  1. Allstadt K (2013) Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms. J Geophys Res Earth Surf 118(3):1472–1490CrossRefGoogle Scholar
  2. Brodsky EE, Gordeev E, Kanamori H (2003) Landslide basal friction as measured by seismic waves. Geophys Res Lett 30(24):285–295CrossRefGoogle Scholar
  3. Burtin A, Hovius N, Milodowski DT, Chen YG, Wu YM, Lin CW, Chen H, Emberson R, Leu PL (2013) Continuous catchment-scale monitoring of geomorphic processes with a 2-D seismological array. J Geophys Res Earth Surf 118(3):1956–1974CrossRefGoogle Scholar
  4. Chen CH, Chao WA, Wu YM, Zhao L, Chen YG, Ho WY, Lin TL, Kuo KH, Chang JM (2013) A seismological study of landquakes using a real-time broad-band seismic network. Geophys J Int 194(2):885–898CrossRefGoogle Scholar
  5. Dammeier F, Moore JR, Hammer C, Haslinger F, Loew S (2016) Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models. J Geophys Res Earth Surf 121(2):351–371CrossRefGoogle Scholar
  6. Deparis J, Jongmans D, Cotton F, Baillet L, Thouvenot F, Hantz D (2008) Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps. Bull Seismol Soc Am 98(4):1781–1796CrossRefGoogle Scholar
  7. Ekström G, Stark CP (2013) Simple scaling of catastrophic landslide dynamics. Science 339(6126):1416–1419CrossRefGoogle Scholar
  8. Favreau P, Mangeney A, Lucas A, Crosta G, Bouchut F (2010) Numerical modeling of landquakes. Geophys Res Lett 37(15):L15305CrossRefGoogle Scholar
  9. Guthrie RH, Friele P, Allstadt K, Roberts N, Evans SG, Delaney KB, Roche D, Clague JJ, Jakob M (2012) The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment. Nat Hazards Earth Syst Sci 12(5):1277–1294CrossRefGoogle Scholar
  10. Helmstetter A, Garambois S (2010) Seismic monitoring of Séchilienne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J Geophys Res Earth Surf 115:F03016CrossRefGoogle Scholar
  11. Hibert C, Mangeney A, Grandjean G, Shapiro NM (2011) Slope instabilities in dolomieu crater, réunion island: from seismic signals to rockfall characteristics. J Geophys Res Earth Surf 116:F04032CrossRefGoogle Scholar
  12. Hibert C, Ekström G, Stark CP (2014) Dynamics of the Bingham canyon mine landslides from seismic signal analysis. Geophys Res Lett 41(13):4535–4541CrossRefGoogle Scholar
  13. Hibert C, Ekström G, Stark CP (2017) The relationship between bulk-mass momentum and short-period seismic radiation in catastrophic landslides. J Geophys Res Earth Surf 122(5):1201–1215CrossRefGoogle Scholar
  14. Huang CJ, Yin HY, Chen CY, Yeh CH, Wang CL (2007) Ground vibrations produced by rock motions and debris flows. J Geophys Res Earth Surf 112:F02014CrossRefGoogle Scholar
  15. Iverson RM (2012) Elementary theory of bed-sediment entrainment by debris flows and avalanches. J Geophys Res 117:F03006CrossRefGoogle Scholar
  16. Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides1. Annu Rev Earth Planet Sci 25(1):85–138CrossRefGoogle Scholar
  17. Julian BR, Miller AD, Foulger GR (1998) Non-double-couple earthquakes. Rev Geophys 36(4):525–549CrossRefGoogle Scholar
  18. Kanamori H, Given JW (1982) Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens—a terrestrial monopole? J Geophys Res Solid Earth 87(B7):5422–5432CrossRefGoogle Scholar
  19. Kanamori H, Given JW, Lay T (1984) Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18. J Geophys Res Solid Earth 89(B3):1856–1866CrossRefGoogle Scholar
  20. Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J R Astron Soc 122(1):108–124CrossRefGoogle Scholar
  21. La Rocca M, Galluzzo D, Saccorotti G, Tinti S, Cimini GB, Del Pezzo E (2004) Seismic signals associated with landslides and with a tsunami at Stromboli Volcano, Italy. Bull Seismol Soc Am 94(5):1850–1867CrossRefGoogle Scholar
  22. Levy C, Mangeney A, Bonilla F, Hibert C, Calder ES, Smith PJ (2015) Friction weakening in granular flows deduced from seismic records at the Soufrière Hills volcano, Montserrat. J Geophys Res Solid Earth 120(11):7536–7557CrossRefGoogle Scholar
  23. Lin CH, Kumagai H, Ando M, Shin TC (2010) Detection of landslides and submarine slumps using broadband seismic networks. Geophys Res Lett 37(22):333–345CrossRefGoogle Scholar
  24. McSaveney MJ (2002) Recent rockfalls and rock avalanches in Mount Cook national park, New Zealand. Rev Eng Geol 15:35–70CrossRefGoogle Scholar
  25. Moretti L, Mangeney A, Capdeville Y, Stutzmann E, Huggel C, Schneider D, Bouchut F (2012) Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves. Geophys Res Lett 39(16):276–289CrossRefGoogle Scholar
  26. Moretti L, Allstadt K, Mangeney A, Capdeville Y, Stutzmann E, Bouchut F (2015) Numerical modeling of the Mount Meager landslide constrained by its force history derived from seismic data. J Geophys Res Solid Earth 120(4):2579–2599CrossRefGoogle Scholar
  27. Norris RD (1994) Seismicity of rockfalls and avalanches at three Cascade Range volcanoes: implications for seismic detection of hazardous mass movements. Bull Seismol Soc Am 84(6):1925–1939Google Scholar
  28. Ogiso M, Yomogida K (2015) Estimation of locations and migration of debris flows on Izu-Oshima Island, Japan, on 16 October 2013 by the distribution of high frequency seismic amplitudes. J Volcanol Geotherm Res 298:15–26CrossRefGoogle Scholar
  29. Schneider D, Bartelt P, Caplan-Auerbach J, Christen M, Huggel C, McArdell BW (2010) Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J Geophys Res Earth Surf 115:F04026Google Scholar
  30. Suriñach E, Vilajosana I, Khazaradze G, Biescas B, Furdada G, Vilaplana JM (2005) Seismic detection and characterization of landslides and other mass movements. Nat Hazards Earth Syst Sci 5(6):791–798CrossRefGoogle Scholar
  31. Vilajosana I, Surinach E, Abellán A, Khazaradze G, Garcia D, Llosa J (2008) Rockfall induced seismic signals: case study in Montserrat, Catalonia. Nat Hazards Earth Syst Sci 8(4):805–812CrossRefGoogle Scholar
  32. Wang R (1999) A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull Seismol Soc Am 89(3):733–741Google Scholar
  33. Yamada M, Matsushi Y, Chigira M, Mori J (2012) Seismic recordings of landslides caused by typhoon Talas (2011), Japan. Geophys Res Lett 39(13):342–343CrossRefGoogle Scholar
  34. Yamada M, Kumagai H, Matsushi Y, Matsuzawa T (2013) Dynamic landslide processes revealed by broadband seismic records. Geophys Res Lett 40(12):2998–3002CrossRefGoogle Scholar
  35. Zheng XF, Ouyang B, Zhang DN, Yao ZX, Liang JH, Zheng J (2009) Technical system construction of data backup centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chin J Geophys 52(5):1412–1417 (in Chinese)Google Scholar
  36. Zheng XF, Yao ZX, Liang JH, Zheng J (2010) The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches. Bull Seismol Soc Am 100(5B):286–2872. CrossRefGoogle Scholar
  37. Zimmer VL, Sitar N (2015) Detection and location of rock falls using seismic and infrasound sensors. Eng Geol 193:49–60CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Mountain Hazards and Surface ProcessChinese Academy of SciencesChengduChina
  2. 2.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina
  5. 5.Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations