Sedimentary deformation structures in the Nyixoi Chongco rock avalanche: implications on rock avalanche transport mechanisms

Abstract

To learn the transport kinematics of rock avalanches, an outcrop study of the Nyixoi Chongco rock avalanche in the Yadong-Gulu Rift of the south Tibetan Plateau, China, is presented here. Sedimentological analysis associated with the outcrops allows important considerations of rock avalanche transport mechanisms. From the outcrops, a series of plastic-brittle deformations in the substrate, including diapiric structures, convoluted laminations, faults, and basal décollements, were observed, indicating the occurrence of a bulldozing effect between the avalanche mass and substrate. In addition, jigsaw structures, inner shear zones, and aligned clasts were found in the avalanche deposit, indicating the occurrence of a shear-dominated movement with differential internal stresses and limited disturbances. Therefore, this paper proposes that a simple shear process dominated the transport of the Nyixoi Chongco rock avalanche and contributed to the generation of these sedimentary structures. A lack of liquefied sandy structures in the outcrops indicates that liquefaction was not a key factor causing the hypermobility of the rock avalanche.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abdrakhmatov K, Strom A (2006) Dissected rockslide and rock avalanche deposits, Tianshan, Kyrgyzstan. In: Evans SG et al. (ed) Landslides from massive rock slope failure. Springer, Dordrecht, pp 551–570

  2. Anderson TB (1974) The relationship between kinkbands and shear fractures in the experimental deformation of slate. J Geol Soc Lond 130(4):367–382. https://doi.org/10.1144/gsjgs.130.4.0367

    Article  Google Scholar 

  3. Basharat M, Rohn J, Ehret D (2012) Lithological and structural control of Hattian Bala rock avalanche triggered by the Kashmir earthquake 2005, Sub-Himalayas, Northern Pakistan. J Earth Sci 23:213–224. https://doi.org/10.1007/s12583-012-0248-3

    Article  Google Scholar 

  4. Blair TC (1999) Form, facies, and depositional history of the North Long John rock avalanche, Owens Valley, California. Can J Earth Sci 36(6):855–870. https://doi.org/10.1139/e99-024

    Article  Google Scholar 

  5. Charrière M, Humair F, Froese C, Jaboyedoff M, Pedrazzini A, Longchamp C (2016) From the source area to the deposit: collapse, fragmentation, and propagation of the frank slide. GSA Bull 128(1–2):332–351. https://doi.org/10.1130/B31243.1

    Google Scholar 

  6. Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev 68(3–4):173–196. https://doi.org/10.1016/j.earscirev.2004.05.001

    Article  Google Scholar 

  7. Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271. https://doi.org/10.1139/t96-005

    Article  Google Scholar 

  8. Davies TRH, McSaveney MJ, Hodgson KA (1999) A fragmentation-spreading model for long-runout rock avalanches. Can Geotech J 36(6):1096–1110. https://doi.org/10.1139/t99-067

    Article  Google Scholar 

  9. De Blasio FV (2014) Friction and dynamics of rock avalanches travelling on glaciers. Geomorphology 213:88–98. https://doi.org/10.1016/j.geomorph.2014.01.001

    Article  Google Scholar 

  10. Dufresne A (2009) Influence of runout path material on rock and debris avalanche mobility: field evidence and analogue modelling (PhD thesis). University of Canterbury, Christchurch

  11. Dufresne A (2012) Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events. Earth Surf Process Landf 37:1527–1541. https://doi.org/10.1002/esp.3296

    Article  Google Scholar 

  12. Dufresne A, Davies TRH (2009) Longitudinal ridges in mass movement deposits. Geomorphology 105(3–4):171–181. https://doi.org/10.1016/j.geomorph.2008.09.009

    Article  Google Scholar 

  13. Dufresne A, Dunning SA (2017) Process dependence of grain size distributions in rock avalanche deposits. Landslides 14:1555–1563. https://doi.org/10.1007/s10346-017-0806-y

    Article  Google Scholar 

  14. Dufresne A, Davies TRH, McSaveney MJ (2010) Influence of runout-path material on emplacement of the round top rock avalanche, New Zealand. Earth Surf Process Landf 35:190–201. https://doi.org/10.1002/esp.1900

    Google Scholar 

  15. Dufresne A, Bösmeier A, Prager C (2016) Sedimentology of rock avalanche deposits - case study and review. Earth Sci Rev 163:234–259. https://doi.org/10.1016/j.earscirev.2016.10.002

    Article  Google Scholar 

  16. Dufresne A, Geertsema M, Shugar DH, Koppes M, Higman B, Haeussler PJ, Stark C, Venditti h JG, Bonno D, Larsen C, Gulick SPS, McCall N, Walton M, Loso MG, Willis MJ (2018) Sedimentology and geomorphology of a large tsunamigenic landslide, Taan Fiord, Alaska. Sediment Geol 364:302–318. https://doi.org/10.1016/j.sedgeo.2017.10.004

    Article  Google Scholar 

  17. Fan XM, Xu Q, Scaringi G, Dai LX, Li WL, Dong XJ, Zhu X, Pei XJ, Dai KR, Havenith HB (2017) Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides 14(6):2129–2146. https://doi.org/10.1007/s10346-017-0907-7

    Article  Google Scholar 

  18. Félix G, Thomas N (2004) Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet Sci Lett 221:197–213. https://doi.org/10.1016/S0012-821X(04)00111-6

    Article  Google Scholar 

  19. Friedmann SJ, Kwon G, Losert W (2003) Granular memory and its effect on the triggering and distribution of rock avalanche events. J Geophys Res 108(B8):2380. https://doi.org/10.1029/2002JB002174

    Article  Google Scholar 

  20. Harrison TM, Copeland P, Kidd WSF, Lovera OM (1995) Activation of the Nyainqentanghla shear zone: implications for uplift of the southern Tibetan plateau. Tectonics 14(3):658–676. https://doi.org/10.1029/95TC00608

    Article  Google Scholar 

  21. Heim A (1932) Landslides and human lives. Bitech Publishers, Vancouver

    Google Scholar 

  22. Hewitt K, Clague JJ, Orwin JF (2008) Legacies of catastrophic rock slope failures in mountain landscapes. Earth Sci Rev 87:1–38. https://doi.org/10.1016/j.earscirev.2007.10.002

    Article  Google Scholar 

  23. Husson L, Bernet M, Guillot S, Huyghe P, Mugnier JL, Replumaz A, Robert X, Van der Beek P (2014) Dynamic ups and downs of the Himalaya. Geology 42:839–842. https://doi.org/10.1130/G36049.1

    Article  Google Scholar 

  24. Johnson CG, Kokelaar BP, Iverson RM, Logan M, LaHusen RG, Gray JMNT (2012) Grain-size segregation and levee formation in geophysical mass flows. J Geophys Res 117(F01032). https://doi.org/10.1029/2011JF002185

  25. Keefer DK (1994) The importance of earthquake induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology 10:265–284. https://doi.org/10.1016/0169-555X(94)90021-3

    Article  Google Scholar 

  26. Kokelaar BP, Graham RL, Gray JMNT, Vallance JW (2014) Fine-grained linings of leveed channels facilitate runout of granular flows. Earth Planet Sci Lett 385:172–180. https://doi.org/10.1016/j.epsl.2013.10.043

    Article  Google Scholar 

  27. Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261:578–589. https://doi.org/10.1016/j.epsl.2007.07.025

    Article  Google Scholar 

  28. Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat Commun 5. https://doi.org/10.1038/ncomms4417

  29. Ouyang C, Zhou K, Xu Q, Yin JH, Peng DL, Wang DP, Li WL (2017) Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides 14:705–718. https://doi.org/10.1007/s10346-016-0764-9

    Article  Google Scholar 

  30. Paguican EMR, Vries BW, Lagmay AFM (2014) Hummocks: how they form and how they evolve in rockslide-debris avalanches. Landslides 11:67–80. https://doi.org/10.1007/s10346-012-0368-y

    Article  Google Scholar 

  31. Peng JB, Ma PH, Wang QY, Zhu XH, Zhang FY, Tong X, Huang WL (2018) Interaction between landsliding materials and the underlying erodible bed in a loess flowslide. Eng Geol 234:38–49. https://doi.org/10.1016/j.enggeo.2018.01.001

    Article  Google Scholar 

  32. Phillips E, Lipka E, van der Meer JJM (2013) Micromorphological evidence of liquefaction, injection and sediment deposition during basal sliding of glaciers. Quat Sci Rev 81:114–137. https://doi.org/10.1016/j.quascirev.2013.10.005

    Article  Google Scholar 

  33. Plafker G, Ericksen GE (1978) Nevados Huascaran avalanches, Peru. In: Voight B (ed) Rockslides and avalanches. Elsevier, Amsterdam, pp 277–314

    Google Scholar 

  34. Rana N, Sati SP, Sundriyal Y, Juyal N (2016) Genesis and implication of soft-sediment deformation structures in high-energy fluvial deposits of the Alaknanda Valley, Garhwal Himalaya, India. Sediment Geol 244:263–276. https://doi.org/10.1016/j.sedgeo.2016.06.012

    Article  Google Scholar 

  35. Reznichenko NV, Andrews GR, Geater RE, Strom A (2017) Multiple origins of large hummock deposits in Alai Valley, Northern Pamir: implications for palaeoclimate reconstructions. Geomorphology 285:347–362. https://doi.org/10.1016/j.geomorph.2017.02.019

    Article  Google Scholar 

  36. Shea T, Vries BW (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4:657–686. https://doi.org/10.1130/GES00131.1

    Article  Google Scholar 

  37. Wang YF, Cheng QG, Lin QW, Li K, Yang HF (2018) Insights into the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan Plateau, China) based on its complex surface landforms. Geomorphology 317:170–183. https://doi.org/10.1016/j.geomorph.2018.05.025

    Article  Google Scholar 

  38. Watkins JA, Ehlmann BL, Yin A (2015) Long-runout landslides and the long-lasting effects of early water activity on Mars. Geology 43:107–110. https://doi.org/10.1130/G36215.1

    Article  Google Scholar 

  39. Weidinger JT, Schramm JM, Nuschej F (2002) Ore mineralization causing slope failure in a high-altitude mountain crest - on the collapse of an 8000 m peak in Nepal. J Asian Earth Sci 21:295–306. https://doi.org/10.1016/S1367-9120(02)00080-9

    Article  Google Scholar 

  40. Weidinger JT, Korup O, Munack H, Altenberger U, Dunning SA, Tippelt G, Lottermoser W (2014) Giant rockslides from the inside. Earth Planet Sci Lett 389:62–73. https://doi.org/10.1016/j.epsl.2013.12.017

    Article  Google Scholar 

  41. Wu ZH, Ye PS, Wang CM, Zhang KQ, Zhao H, Zheng YG, Yin JH, Li HH (2015) The relics, ages and significance of prehistoric large earthquakes in the Angang Graben in the South Tibet. Earth Sci J China Univ Geosci 40(10):1621–1642

    Google Scholar 

  42. Xing AG, Wang GH, Yin YP, Jiang Y, Wang GZ, Yang SY, Dai DR, Zhu YQ, Dai JA (2014) Dynamic analysis and field investigation of a fluidized landslide in Guanling, Guizhou, China. Eng Geol 181:1–14. https://doi.org/10.1016/j.enggeo.2014.07.022

    Article  Google Scholar 

  43. Xu Q, Shang YJ, van Asch T, Wang ST, Zhang ZY, Dong XJ (2012) Observations from the large, rapid Yigong rockslide-debris avalanche, southeast Tibet. Can Geotech J 49:589–606. https://doi.org/10.1139/t2012-021

    Article  Google Scholar 

  44. Yin YP, Sun P, Zhang M, Li B (2011) Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China. Landslides 8(1):49–65. https://doi.org/10.1007/s10346-010-0237-5

    Article  Google Scholar 

  45. Yoshida H (2014) Hummock alignment in Japanese volcanic debris avalanches controlled by pre-avalanche slope of depositional area. Geomorphology 223:67–80. https://doi.org/10.1016/j.geomorph.2014.06.024

    Article  Google Scholar 

  46. Yuan ZD, Chen J, Owen LA, Hedrick KA, Caffee MW, Li WQ, Schoenbohm LM, Robinson AC (2013) Nature and timing of large landslides within an active orogeny, Eastern Pamir, China. Geomorphology 182:49–65. https://doi.org/10.1016/j.geomorph.2012.10.028

    Article  Google Scholar 

  47. Zhang Z, Chen Y, Yuan X, Tian X, Klemperer SL, Xu T, Bai Z, Zhang H, Wu J, Teng J (2013) Normal faulting from simple shear rifting in South Tibet, using evidence from passive seismic profiling across the Yadong-Gulu rift. Tectonophysics 606:178–186. https://doi.org/10.1016/j.tecto.2013.03.019

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China [grant number 2017YFC1501000]; the National Natural Science Foundation of China [grant numbers 41530639, 41502289, 41761144080, 41877226, 41877237]; and the Fundamental Research Funds for the Central Universities [grant number 2682016CX088]. We would like to thank Editage for English language editing. The authors declare that they have no conflict of interests. The data presented in this paper are available on request from the corresponding author.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yu-Feng Wang or Qian-Gong Cheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, YF., Cheng, QG., Shi, AW. et al. Sedimentary deformation structures in the Nyixoi Chongco rock avalanche: implications on rock avalanche transport mechanisms. Landslides 16, 523–532 (2019). https://doi.org/10.1007/s10346-018-1117-7

Download citation

Keywords

  • Nyixoi Chongco rock avalanche
  • Internal sedimentological structures
  • Transport forms
  • Avalanche kinematics