Skip to main content

Tectonic, topographic and rock-type influences on large landslides at the northern margin of the Anatolian Plateau

Abstract

High Anatolian orographic margins have large variations in terms of topographic relief, precipitation, and uplift rate. These variations lead to the dynamics of mass movements and surface runoff, which are the dominant geomorphological processes in ice-free mountain landscapes. There is growing recognition that large landslides are important agents of landscape evolution, resulting in massive slope failures, which can cause extensive and rapid topographic changes in many active orogenic belts. Unlike the cognatic orogenic plateau margins in the world, there are no studies available on the large landslides and their geomorphic impact at the margins of the Anatolian Plateau. This study presents results from a regional-scale inventory of 1290 large landslides (> 1 km2) that allow the characterization of spatial distribution and landslide-dominated landscapes in the northern margins of the Anatolian Plateau. The majority of large landslides are clustered in three main zones that correspond to the Western, Central, and Eastern Pontides, which is an east-west-trending orogenic belt that represents a coalesced tectonic entity in the northern section of Turkey. Nearly 80% of large landslides have occurred in a terrain with a mean hillslope relief of > 1000 m in those three landslide-dominated landscapes. The results of regional comparisons reveal that in addition to hillslope relief and steepness, lithotectonic differences largely control the abundance of landslides along the northern margins of the Anatolian Plateau. In this respect, the spatial distribution and abundance of large landslides imply a landscape in which lithological and tectonic controls on hillslope erosion are more significant than climate. The study further shows that the parallel or perpendicular position of the landslides with respect to the direction of the drainage network is effective as positive or negative feedback in response to fluvial dissection of the plateau margins. On the other hand, there is certainly a need for more comprehensive radiometric dating studies to understand the contribution of large landslides on the erosional decay rate of Anatolian Plateau margins. Furthermore, the presence of these large landslides and the derived deposits in this dynamic terrain provide a unique opportunity for deciphering the past climatic and seismic events.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94(3):401–419. https://doi.org/10.1007/s00531-005-0481-4

    Article  Google Scholar 

  2. Agliardi F, Crosta GB, Frattini P, Malusà MG (2013) Giant non-catastrophic landslides and the long-term exhumation of the European Alps. Earth Planet Sci Lett 365:263–274. https://doi.org/10.1016/j.epsl.2013.01.030

    Article  Google Scholar 

  3. Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54(6):1127–1143. https://doi.org/10.1007/s00254-007-0882-8

    Article  Google Scholar 

  4. Antinao JL, Gosse J (2009) Large rockslides in the Southern Central Andes of Chile (32–34.5 S): tectonic control and significance for Quaternary landscape evolution. Geomorphology 104(3–4):117–133. https://doi.org/10.1016/j.geomorph.2008.08.008

    Article  Google Scholar 

  5. Barka A (1996) Slip distribution along the North Anatolian fault associated with the large earthquakes of the period 1939 to 1967. Bull Seismol Soc Am 86(5):1238–1254

    Google Scholar 

  6. Barka A, Eyidogan H (1993) The Erzincan earthquake of 13 March 1992 in eastern Turkey. Terra Nova 5(2):190–194. https://doi.org/10.1111/j.1365-3121.1993.tb00245.x

    Article  Google Scholar 

  7. Blöthe JH, Munack H, Korup O, Fülling A, Garzanti E, Resentini A, Kubik PW (2014) Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin. Quat Sci Rev 94:102–119. https://doi.org/10.1016/j.quascirev.2014.04.011

    Article  Google Scholar 

  8. Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N, Reid MR, Duncan C (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379(6565):505–510. https://doi.org/10.1038/379505a0

    Article  Google Scholar 

  9. Cakir Z, Ergintav S, Özener H, Dogan U, Akoglu AM, Meghraoui M, Reilinger R (2012) Onset of aseismic creep on major strike-slip faults. Geology 40(12):1115–1118. https://doi.org/10.1130/G33522.1

    Article  Google Scholar 

  10. Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 72(1–4):250–271. https://doi.org/10.1016/j.geomorph.2005.05.011

    Article  Google Scholar 

  11. Channell JET, Tüysüz O, Bektas O, Sengör AMC (1996) Jurassic-Cretaceous paleomagnetism and paleogeography of the Pontides (Turkey). Tectonics 15(1):201–212. https://doi.org/10.1029/95TC02290

    Article  Google Scholar 

  12. Chiba T, Kaneta SI, Suzuki Y (2008) Red relief image map: new visualization method for three dimensional data. Int Arch Photogramm Remote Sens Spat Inf Sci 37(B2):1071–1076

    Google Scholar 

  13. Crosta GB, Frattini P, Agliardi F (2013) Deep seated gravitational slope deformations in the European Alps. Tectonophysics 605:13–33

    Article  Google Scholar 

  14. Cruden DM (2000) Some forms of mountain peaks in the Canadian Rockies controlled by their rock structure. Quat Int 68:59–65. https://doi.org/10.1016/S1040-6182(00)00032-X

    Article  Google Scholar 

  15. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: AK Turner and RL Schuster (eds) Landslides, investigation and mitigation. Spec Rep 247, Transp Res Board, Natl Res Counc, Washington DC. pp 36–75

  16. Dargahi S, Arvin M, Pan Y, Babaei A (2010) Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, Southwestern Kerman, Iran: constraints on the Arabian–Eurasian continental collision. Lithos 115(1–4):190–204. https://doi.org/10.1016/j.lithos.2009.12.002

    Article  Google Scholar 

  17. De Berc SB, Soula JC, Baby P, Souris M, Christophoul F, Rosero J (2005) Geomorphic evidence of active deformation and uplift in a modern continental wedge-top–foredeep transition: example of the eastern Ecuadorian Andes. Tectonophysics 399(1–4):51–380. https://doi.org/10.1016/j.tecto.2004.12.030

    Article  Google Scholar 

  18. Dewey JF, Sengör AMC (1979) Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geol Soc Am Bull 90(1):84–92. https://doi.org/10.1130/0016-7606(1979)90<84:AASRCM>2.0.CO;2

    Article  Google Scholar 

  19. Duman TY (2009) The largest landslide dam in Turkey: Tortum landslide. Eng Geol 104(1–2):66–79. https://doi.org/10.1016/j.enggeo.2008.08.006

    Article  Google Scholar 

  20. Duman TY, Can T, Emre Ö, Keçer M, Doğan A, Ateş Ş, Durmaz S (2005) Landslide inventory of northwestern Anatolia, Turkey. Eng Geol 77(1–2):99–114. https://doi.org/10.1016/j.enggeo.2004.08.005

    Article  Google Scholar 

  21. Duman TY, Can T, Emre O (2011) 1: 1,500,000 scaled Turkish landslide inventory map General Directorate of Mineral Research and Exploration, Special Publications 27, Ankara

  22. Emre O, Duman TY, Ozalp S, Elmaci H, Olgun S, Saroglu F (2013) Active fault map of Turkey with and explanatory text General Directorate of Mineral Research and Exploration. Special Publication Series 30, Ankara, Turkey

  23. Fan X, van Westen CJ, Korup O, Gorum T, Xu Q, Dai F, Huang R, Wang G (2012) Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China. Geomorphology 171:58–68. https://doi.org/10.1016/j.geomorph.2012.05.003

    Article  Google Scholar 

  24. Geertsema M, Clague JJ, Schwab JW, Evans SG (2006) An overview of recent large catastrophic landslides in northern British Columbia, Canada. Eng Geol 83(1–3):120–143. https://doi.org/10.1016/j.enggeo.2005.06.028

    Article  Google Scholar 

  25. Godard V, Bourlès DL, Spinabella F, Burbank DW, Bookhagen B, Fisher GB, Moulin A, Léanni L (2014) Dominance of tectonics over climate in Himalayan denudation. Geology 42(3):243–246. https://doi.org/10.1130/G35342.1

    Article  Google Scholar 

  26. Gögüs OH, Pysklywec RN, Sengör AMC, Gün E (2017) Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nat Commun 8(1):1538. https://doi.org/10.1038/s41467-017-01611-3

    Article  Google Scholar 

  27. Gökce O, Demir A, Özden Ş (2006) Türkiye’de Heyelanlı Yerleşim Birimlerinin Dagılımıve CBS OrtamındaSorgulanması (AfetEnvanteri 1950-2005). I HeyelanSempozyumu 30:24–40 (In Turkish)

    Google Scholar 

  28. Gokceoglu C, Sonmez H, Nefeslioglu HA, Duman TY, Can T (2005) The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng Geol 81(1):65–83. https://doi.org/10.1016/j.enggeo.2005.07.011

    Article  Google Scholar 

  29. Gorum T, Fan X, van Westen CJ, Huang RQ, Xu Q, Tang C, Wang G (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133(3–4):152–167. https://doi.org/10.1016/j.geomorph.2010.12.030

    Article  Google Scholar 

  30. Gursoy H, Tatar O, Akpınar Z, Polat A, Mesci L, Tuncer D (2013) New observations on the 1939 Erzincan earthquake surface rupture on the Kelkit Valley segment of the North Anatolian Fault Zone, Turkey. J Geodyn 65:259–271. https://doi.org/10.1016/j.jog.2012.06.002

    Article  Google Scholar 

  31. Haque U, Blum P, Da Silva PF, Andersen P, Pilz J, Chalov SR, Malet JP, Auflič MJ, Andres N, Poyiadji E, Lamas PC (2016) Fatal landslides in Europe. Landslides 13(6):1545–1554. https://doi.org/10.1007/s10346-016-0689-3

    Article  Google Scholar 

  32. Havenith HB, Torgoev A, Schlögel R, Braun A, Torgoev I, Ischuk A (2015) Tien Shan geohazards database: landslide susceptibility analysis. Geomorphology 249:32–43. https://doi.org/10.1016/j.geomorph.2015.03.019

    Article  Google Scholar 

  33. Herece E (2008) Dogu Anadolu Fayi (DAF) Atlasi/Atlas of East Anatolian Fault (DAF). Maden Tetkikve Arama Genel Mudurlugu Ozel Yayinlar Serisi 13 Ankara, 177 p. (In Turkish with English Abstract)

  34. Herece E, Akay E (2003) Kuzey Anadolu Fayi (KAF) Atlasi/Atlas of North Anatolian Fault (NAF). Maden Tetkikve Arama Genel Mudurlugu Ozel Yayinlar Serisi 2. (In Turkish with English Abstract)

  35. Hermanns RL, Strecker MR (1999) Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina. Geol Soc Am Bull 111(6):934–948. https://doi.org/10.1130/0016-7606(1999)111<0934:SALCOL>2.3.CO;2

    Article  Google Scholar 

  36. Hermanns RL, Trauth MH, Niedermann S, McWilliams M, Strecker MR (2000) Tephrochronologic constraints on temporal distribution of large landslides in Northwest Argentina. J Geol 108(1):35–52. https://doi.org/10.1086/314383

    Article  Google Scholar 

  37. Hermanns RL, Niedermann S, Garcia AV, Gomez JS, Strecker MR (2001) Neotectonics and catastrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentina. Geology 29(7):619–622. https://doi.org/10.1130/0091-7613(2001)029<0619:NACFOM>2.0.CO;2

    Article  Google Scholar 

  38. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  39. Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19(6):1095–1106. https://doi.org/10.1029/2000TC900018

    Article  Google Scholar 

  40. Karaca M, Deniz A, Tayanc M (2000) Cyclone track variability over Turkey in association with regional climate. Int J Climatol 20(10):1225–1236. https://doi.org/10.1002/1097-0088(200008)20:10<1225::AID-JOC535>3.0.CO;2-1

    Article  Google Scholar 

  41. Ketin I (1948) Ober die tektonisch-mechanischen Folgerungenaus den grossenanatolischen Erdbeben des letzten Dezenniums. Geol Rundsch 36:77–83

    Article  Google Scholar 

  42. Korup O (2004) Landslide-induced river channel avulsions in mountain catchments of Southwest New Zealand. Geomorphology 63(1–2):57–80. https://doi.org/10.1016/j.geomorph.2004.03.005

    Article  Google Scholar 

  43. Korup O (2005) Distribution of landslides in Southwest New Zealand. Landslides 2(1):43–51. https://doi.org/10.1007/s10346-004-0042-0

    Article  Google Scholar 

  44. Korup O, Montgomery DR (2008) Tibetan plateau river incision inhibited by glacial stabilization of the Tsangpo gorge. Nature 455(7214):786–789. https://doi.org/10.1038/nature07322

    Article  Google Scholar 

  45. Korup O, Weidinger JT (2011) Rock type, precipitation, and the steepness of Himalayan threshold hillslopes. Geol Soc Lond, Spec Publ 353(1):235–249. https://doi.org/10.1144/SP353.12

    Article  Google Scholar 

  46. Korup O, Strom AL, Weidinger JT (2006) Fluvial response to large rock-slope failures: examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand. Geomorphology 78:3–21. https://doi.org/10.1016/j.geomorph.2006.01.020

    Article  Google Scholar 

  47. Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261(3–4):578–589. https://doi.org/10.1016/j.epsl.2007.07.025

    Article  Google Scholar 

  48. Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120(1–2):77–90. https://doi.org/10.1016/j.geomorph.2009.09.017

    Article  Google Scholar 

  49. Lacroix P, Bièvre G, Pathier E, Kniess U, Jongmans D (2018) Use of Sentinel-2 images for the detection of precursory motions before landslide failures. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2018.03.042

  50. Larsen IJ, Montgomery DR (2012) Landslide erosion coupled to tectonics and river incision. Nat Geosci 5(7):468–473. https://doi.org/10.1038/ngeo1479

    Article  Google Scholar 

  51. Larsen IJ, Almond PC, Eger A, Stone JO, Montgomery DR, Malcolm B (2014) Rapid soil production and weathering in the Western Alps, New Zealand. Science 1244908. https://doi.org/10.1126/science.1244908

  52. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res Solid Earth 105(B3):5695–5719. https://doi.org/10.1029/1999JB900351

    Article  Google Scholar 

  53. McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J Int 30(2):109–185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x

    Article  Google Scholar 

  54. Meng QR, Hu JM, Wang E, Qu HJ (2006) Late Cenozoic denudation by large-magnitude landslides in the eastern edge of Tibetan Plateau. Earth Planet Sci Lett 243(1–2):252–267. https://doi.org/10.1016/j.epsl.2005.12.008

    Article  Google Scholar 

  55. Moix P, Beccaletto L, Kozur HW, Hochard C, Rosselet F, Stampfli GM (2008) A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics 451(1–4):7–39. https://doi.org/10.1016/j.tecto.2007.11.044

    Article  Google Scholar 

  56. Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201(3–4):481–489. https://doi.org/10.1016/S0012-821X(02)00725-2

    Article  Google Scholar 

  57. Mota B, Mondini A, Malamud BD, Mihir M, Drake N (2014) Landslide detectability with coarse resolution imagery: a Sentinel-2 emulation study to access spectral landslide discrimination. In: EGU general assembly conference abstracts, vol 16. p 11958

  58. MTA (2002) 1: 500,000 scaled Turkish geology map series. MTA Genel Mudurlugu, Ankara

  59. Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94(3–4):401–418. https://doi.org/10.1016/j.geomorph.2006.10.036

    Article  Google Scholar 

  60. Nefeslioglu HA, Gokceoglu C, Sonmez H, Gorum T (2011) Medium-scale hazard mapping for shallow landslide initiation: the Buyukkoy catchment area (Cayeli, Rize, Turkey). Landslides 8(4):459–483. https://doi.org/10.1007/s10346-011-0267-7

    Article  Google Scholar 

  61. Ocakoglu F, Gokceoglu C, Ercanoglu M (2002) Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey. Geomorphology 42(3–4):329–341. https://doi.org/10.1016/S0169-555X(01)00094-0

    Article  Google Scholar 

  62. Ocakoglu F, Kır O, Yılmaz İÖ, Açıkalın S, Erayık C, Tunoglu C, Leroy SA (2013) Early to mid-Holocene Lake level and temperature records from the terraces of Lake Sünnet in NW Turkey. Palaeogeogr Palaeoclimatol Palaeoecol 369:175–184. https://doi.org/10.1016/j.palaeo.2012.10.017

    Article  Google Scholar 

  63. Okay AI, Tüysüz O (1999) Tethyan sutures of northern Turkey. Geol Soc Lond, Spec Publ 156(1):475–515. https://doi.org/10.1144/GSL.SP.1999.156.01.22

    Article  Google Scholar 

  64. Okay AI, Sengör AMC, Görür N (1994) Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology 22(3):267–270. https://doi.org/10.1130/0091-7613(1994)022<0267:KHOTOO>2.3.CO;2

    Article  Google Scholar 

  65. Ouimet WB, Whipple KX, Royden LH, Sun Z, Chen Z (2007) The influence of large landslides on river incision in a transient landscape: eastern margin of the Tibetan Plateau (Sichuan, China). Geol Soc Am Bull 119(11–12):1462–1476. https://doi.org/10.1130/B26136.1

    Article  Google Scholar 

  66. Reilinger RE, McClusky SC, Oral MB, King RW, Toksoz MN, Barka AA, Kinik I, Lenk O, Sanli I (1997) Global positioning system measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. J Geophys Res Solid Earth 102(B5):9983–9999. https://doi.org/10.1029/96JB03736

    Article  Google Scholar 

  67. Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliuv I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  68. Safran BE, Anderson SW, Mills-Novoa M, House PK, Ely L (2011) Controls on large landslide distribution and implications for the geomorphic evolution of the southern interior Columbia River basin. GSA Bull 123(9–10):1851–1862. https://doi.org/10.1130/B30061.1

    Article  Google Scholar 

  69. Saris F, Hannah DM, Eastwood WJ (2010) Spatial variability of precipitation regimes over Turkey. Hydrol Sci J–Journal des Sciences Hydrologiques 55(2):234–249. https://doi.org/10.1080/02626660903546142

    Article  Google Scholar 

  70. Saroglu F, Yılmaz Y (1986) Geological evolution and basin models during neotectonic episode in the eastern Anatolia. Bull Mineral Res Explor Inst Turk 107:63–83

    Google Scholar 

  71. Savi S, Schildgen TF, Tofelde S, Wittmann H, Scherler D, Mey J, Alonso NR, Strecker MR (2016) Climatic controls on debris-flow activity and sediment aggradation: the Del Medio fan, NW Argentina. J Geophys Res Earth Surface 121(12):2424–2445. https://doi.org/10.1002/2016JF003912

    Article  Google Scholar 

  72. Schemmel F, Mikes T, Rojay B, Mulch A (2013) The impact of topography on isotopes in precipitation across the central Anatolian Plateau (Turkey). Am J Sci 313(2):61–80. https://doi.org/10.2475/02.2013.01

    Article  Google Scholar 

  73. Schildgen TF, Cosentino D, Bookhagen B, Niedermann S, Yildirim C, Echtler H, Wittmann H, Strecker MR (2012) Multi-phased uplift of the southern margin of the central Anatolian plateau, Turkey: a record of tectonic and upper mantle processes. Earth Planet Sci Lett 317:85–95. https://doi.org/10.1016/j.epsl.2011.12.003

    Article  Google Scholar 

  74. Schildgen TF, Yildirim C, Cosentino D, Strecker MR (2014) Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth Sci Rev 128:147–168. https://doi.org/10.1016/j.earscirev.2013.11.006

    Article  Google Scholar 

  75. Schmidt KM, Montgomery DR (1995) Limits to relief. Science 270(5236):617–620. https://doi.org/10.1126/science.270.5236.617

    Article  Google Scholar 

  76. Sendir H, Yılmaz I (2002) Structural, geomorphological and geomechanical aspects of the Koyulhisar landslides in the North Anatolian Fault Zone (Sivas, Turkey). Environ Geol 42(1):52–60. https://doi.org/10.1007/s00254-002-0528-9

    Article  Google Scholar 

  77. Sengör AMC (1979) The north Anatolian transform fault: its age, offset and tectonic significance. J Geol Soc 136(3):269–282. https://doi.org/10.1144/gsjgs.136.3.0269

    Article  Google Scholar 

  78. Sengör AMC (1987) Tectonics of the Tethysides: orogenic collage development in a collisional setting. Annu Rev Earth Planet Sci 15(1):213–244. https://doi.org/10.1146/annurev.ea.15.050187.001241

    Article  Google Scholar 

  79. Sengör AMC, Kidd WSF (1979) Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics 55(3–4):361–376. https://doi.org/10.1016/0040-1951(79)90184-7

    Article  Google Scholar 

  80. Sengör AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75(3–4):181–241. https://doi.org/10.1016/0040-1951(81)90275-4

    Article  Google Scholar 

  81. Sengör AMC, Görür N, Saroglu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (eds) Strike-slip deformation, basin formation and sedimentation. Society of Economic Paleontolgists and Mineralgists. Special Publications 37, pp 227–264. https://doi.org/10.2110/pec.85.37.0227

  82. Sengör AMC, Tüysüz O, Imren C, Sakınc M, Eyidoğan H, Görür N, Le Pichon X, Rangin C (2005) The North Anatolian fault: a new look. Annu Rev Earth Planet Sci 33:37–112. https://doi.org/10.1146/annurev.earth.32.101802.120415

    Article  Google Scholar 

  83. Seymen I (1975) Kelkit Vadisi Kesiminde Kuzey Anadolu Fay Zonunun Tektonik Özelliği: DoktoraTezi, İstanbul Teknik Üniversitesi, Maden Fakültesi, İstanbul (in Turkish)

  84. Strecker MR, Marrett R (1999) Kinematic evolution of fault ramps and its role in development of landslides and lakes in the northwestern Argentine Andes. Geology 27(4):307–310. https://doi.org/10.1130/0091-7613(1999)027<0307:KEOFRA>2.3.CO;2

    Article  Google Scholar 

  85. Strom AL (1998) Giant ancient rock slides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan. Landslide News 11:20–23

    Google Scholar 

  86. Strom AL, Korup O (2006) Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan. Landslides 3(2):125–136. https://doi.org/10.1007/s10346-005-0027-7

    Article  Google Scholar 

  87. Stumpf A, Marc O, Malet JP, Michea D (2017) Sentinel-2 for rapid operational landslide inventory mapping. In: EGU general assembly conference abstracts, vol 19. p 4449

  88. Tan O, Tapirdamaz MC, Yoruk A (2008) The earthquake catalogues for Turkey. Turk J Earth Sci 17(2):405–418

    Google Scholar 

  89. Tanyas H, Allstadt KE, van Westen CJ (2018) An updated method for estimating landslide-event magnitude. Earth Surf Process Landf 43:1836–1847. https://doi.org/10.1002/esp.4359

    Article  Google Scholar 

  90. Tatli H, Dalfes NH, Mentes S (2004) A statistical downscaling method for monthly total precipitation over Turkey. Int J Climatol 24:161–180. https://doi.org/10.1002/joc.997

    Article  Google Scholar 

  91. Turkes M (1996) Spatial and temporal analysis of annual rainfall variations in Turkey. Int J Climatol 16(9):1057–1076. https://doi.org/10.1002/(SICI)1097-0088(199609)16:9<1057::AID-JOC75>3.0.CO;2-D

    Article  Google Scholar 

  92. Ulusay R, Tuncay E, Sonmez H, Gokceoglu C (2004) An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Eng Geol 74(3–4):265–291. https://doi.org/10.1016/j.enggeo.2004.04.002

    Article  Google Scholar 

  93. Ulusay R, Aydan Ö, Kılıc R (2007) Geotechnical assessment of the 2005 Kuzulu landslide (Turkey). Eng Geol 89(1–2):112–128. https://doi.org/10.1016/j.enggeo.2006.09.020

    Article  Google Scholar 

  94. Ustaomer T, Robertson AH (2010) Late Palaeozoic-Early Cenozoic tectonic development of the Eastern Pontides (Artvin area), Turkey: stages of closure of Tethys along the southern margin of Eurasia. Geol Soc Lond, Spec Publ 340(1):281–327. https://doi.org/10.1144/SP340.13

    Article  Google Scholar 

  95. van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3–4):112–131. https://doi.org/10.1016/j.enggeo.2008.03.010

    Article  Google Scholar 

  96. Yildirim C, Tüysüz O (2017) Estimation of the long-term slip, surface uplift and block rotation along the northern strand of the North Anatolian fault zone: inferences from geomorphology of the Almacık Block. Geomorphology 297:55–68. https://doi.org/10.1016/j.geomorph.2017.08.038

    Article  Google Scholar 

  97. Yildirim C, Schildgen TF, Echtler H, Melnick D, Strecker MR (2011) Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault: implications for the northern margin of the Central Anatolian Plateau, Turkey. Tectonics 30(5). https://doi.org/10.1029/2010TC002756

  98. Yilmaz Y, Tüysüz O, Yigitbas E, Genç SC, Sengör AMC (1997) Geology and tectonic evolution of the Pontides. In: Robinson AG (ed) Regional and petroleum geology of the Black Sea and surrounding region, AAPG Mem 68, p 183–226

  99. Yokoyama R, Shirasawa M, Pike RJ (2002) Visualizing topography by openness: a new application of image processing to digital elevation models. Photogramm Eng Remote Sens 68(3):257–266

    Google Scholar 

  100. Zabci C, Akyuz HS, Karabacak V, Sançar T, Altunel E, Gürsoy H, Tatar O (2011) Palaeoearthquakes on the Kelkit Valley segment of the North Anatolian Fault, Turkey: implications for the surface rupture of the historical 17 August 1668 Anatolian earthquake. Turk J Earth Sci 20(4):411–427. https://doi.org/10.3906/yer-0910-48

    Article  Google Scholar 

  101. Zor E, Sandvol E, Gürbüz C, Türkelli N, Seber D, Barazangi M (2003) The crustal structure of the East Anatolian plateau (Turkey) from receiver functions. Geophys Res Lett 30(24). https://doi.org/10.1029/2003GL018192

Download references

Acknowledgments

The author thank Hakan Tanyas for providing frequency-area distribution codes and Dr. Cengiz Yildirim and Abdullah Akbas for fruitful discussions and inspiration. This study supported by the Turkish Academy of Sciences within the framework of the Distinguished Young Scientist Award Program (TÜBA-GEBIP-2016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tolga Görüm.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Görüm, T. Tectonic, topographic and rock-type influences on large landslides at the northern margin of the Anatolian Plateau. Landslides 16, 333–346 (2019). https://doi.org/10.1007/s10346-018-1097-7

Download citation

Keywords

  • Landslide
  • Landslide inventory
  • Topography
  • Erosion
  • Pontide
  • Anatolian Plateau