, Volume 16, Issue 2, pp 333–346 | Cite as

Tectonic, topographic and rock-type influences on large landslides at the northern margin of the Anatolian Plateau

  • Tolga GörümEmail author
Original Paper


High Anatolian orographic margins have large variations in terms of topographic relief, precipitation, and uplift rate. These variations lead to the dynamics of mass movements and surface runoff, which are the dominant geomorphological processes in ice-free mountain landscapes. There is growing recognition that large landslides are important agents of landscape evolution, resulting in massive slope failures, which can cause extensive and rapid topographic changes in many active orogenic belts. Unlike the cognatic orogenic plateau margins in the world, there are no studies available on the large landslides and their geomorphic impact at the margins of the Anatolian Plateau. This study presents results from a regional-scale inventory of 1290 large landslides (> 1 km2) that allow the characterization of spatial distribution and landslide-dominated landscapes in the northern margins of the Anatolian Plateau. The majority of large landslides are clustered in three main zones that correspond to the Western, Central, and Eastern Pontides, which is an east-west-trending orogenic belt that represents a coalesced tectonic entity in the northern section of Turkey. Nearly 80% of large landslides have occurred in a terrain with a mean hillslope relief of > 1000 m in those three landslide-dominated landscapes. The results of regional comparisons reveal that in addition to hillslope relief and steepness, lithotectonic differences largely control the abundance of landslides along the northern margins of the Anatolian Plateau. In this respect, the spatial distribution and abundance of large landslides imply a landscape in which lithological and tectonic controls on hillslope erosion are more significant than climate. The study further shows that the parallel or perpendicular position of the landslides with respect to the direction of the drainage network is effective as positive or negative feedback in response to fluvial dissection of the plateau margins. On the other hand, there is certainly a need for more comprehensive radiometric dating studies to understand the contribution of large landslides on the erosional decay rate of Anatolian Plateau margins. Furthermore, the presence of these large landslides and the derived deposits in this dynamic terrain provide a unique opportunity for deciphering the past climatic and seismic events.


Landslide Landslide inventory Topography Erosion Pontide Anatolian Plateau 



The author thank Hakan Tanyas for providing frequency-area distribution codes and Dr. Cengiz Yildirim and Abdullah Akbas for fruitful discussions and inspiration. This study supported by the Turkish Academy of Sciences within the framework of the Distinguished Young Scientist Award Program (TÜBA-GEBIP-2016).


  1. Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. Int J Earth Sci 94(3):401–419. Google Scholar
  2. Agliardi F, Crosta GB, Frattini P, Malusà MG (2013) Giant non-catastrophic landslides and the long-term exhumation of the European Alps. Earth Planet Sci Lett 365:263–274. Google Scholar
  3. Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environ Geol 54(6):1127–1143. Google Scholar
  4. Antinao JL, Gosse J (2009) Large rockslides in the Southern Central Andes of Chile (32–34.5 S): tectonic control and significance for Quaternary landscape evolution. Geomorphology 104(3–4):117–133. Google Scholar
  5. Barka A (1996) Slip distribution along the North Anatolian fault associated with the large earthquakes of the period 1939 to 1967. Bull Seismol Soc Am 86(5):1238–1254Google Scholar
  6. Barka A, Eyidogan H (1993) The Erzincan earthquake of 13 March 1992 in eastern Turkey. Terra Nova 5(2):190–194. Google Scholar
  7. Blöthe JH, Munack H, Korup O, Fülling A, Garzanti E, Resentini A, Kubik PW (2014) Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin. Quat Sci Rev 94:102–119. Google Scholar
  8. Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N, Reid MR, Duncan C (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379(6565):505–510. Google Scholar
  9. Cakir Z, Ergintav S, Özener H, Dogan U, Akoglu AM, Meghraoui M, Reilinger R (2012) Onset of aseismic creep on major strike-slip faults. Geology 40(12):1115–1118. Google Scholar
  10. Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 72(1–4):250–271. Google Scholar
  11. Channell JET, Tüysüz O, Bektas O, Sengör AMC (1996) Jurassic-Cretaceous paleomagnetism and paleogeography of the Pontides (Turkey). Tectonics 15(1):201–212. Google Scholar
  12. Chiba T, Kaneta SI, Suzuki Y (2008) Red relief image map: new visualization method for three dimensional data. Int Arch Photogramm Remote Sens Spat Inf Sci 37(B2):1071–1076Google Scholar
  13. Crosta GB, Frattini P, Agliardi F (2013) Deep seated gravitational slope deformations in the European Alps. Tectonophysics 605:13–33Google Scholar
  14. Cruden DM (2000) Some forms of mountain peaks in the Canadian Rockies controlled by their rock structure. Quat Int 68:59–65. Google Scholar
  15. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: AK Turner and RL Schuster (eds) Landslides, investigation and mitigation. Spec Rep 247, Transp Res Board, Natl Res Counc, Washington DC. pp 36–75Google Scholar
  16. Dargahi S, Arvin M, Pan Y, Babaei A (2010) Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, Southwestern Kerman, Iran: constraints on the Arabian–Eurasian continental collision. Lithos 115(1–4):190–204. Google Scholar
  17. De Berc SB, Soula JC, Baby P, Souris M, Christophoul F, Rosero J (2005) Geomorphic evidence of active deformation and uplift in a modern continental wedge-top–foredeep transition: example of the eastern Ecuadorian Andes. Tectonophysics 399(1–4):51–380. Google Scholar
  18. Dewey JF, Sengör AMC (1979) Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geol Soc Am Bull 90(1):84–92.<84:AASRCM>2.0.CO;2 Google Scholar
  19. Duman TY (2009) The largest landslide dam in Turkey: Tortum landslide. Eng Geol 104(1–2):66–79. Google Scholar
  20. Duman TY, Can T, Emre Ö, Keçer M, Doğan A, Ateş Ş, Durmaz S (2005) Landslide inventory of northwestern Anatolia, Turkey. Eng Geol 77(1–2):99–114. Google Scholar
  21. Duman TY, Can T, Emre O (2011) 1: 1,500,000 scaled Turkish landslide inventory map General Directorate of Mineral Research and Exploration, Special Publications 27, AnkaraGoogle Scholar
  22. Emre O, Duman TY, Ozalp S, Elmaci H, Olgun S, Saroglu F (2013) Active fault map of Turkey with and explanatory text General Directorate of Mineral Research and Exploration. Special Publication Series 30, Ankara, TurkeyGoogle Scholar
  23. Fan X, van Westen CJ, Korup O, Gorum T, Xu Q, Dai F, Huang R, Wang G (2012) Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China. Geomorphology 171:58–68. Google Scholar
  24. Geertsema M, Clague JJ, Schwab JW, Evans SG (2006) An overview of recent large catastrophic landslides in northern British Columbia, Canada. Eng Geol 83(1–3):120–143. Google Scholar
  25. Godard V, Bourlès DL, Spinabella F, Burbank DW, Bookhagen B, Fisher GB, Moulin A, Léanni L (2014) Dominance of tectonics over climate in Himalayan denudation. Geology 42(3):243–246. Google Scholar
  26. Gögüs OH, Pysklywec RN, Sengör AMC, Gün E (2017) Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nat Commun 8(1):1538. Google Scholar
  27. Gökce O, Demir A, Özden Ş (2006) Türkiye’de Heyelanlı Yerleşim Birimlerinin Dagılımıve CBS OrtamındaSorgulanması (AfetEnvanteri 1950-2005). I HeyelanSempozyumu 30:24–40 (In Turkish)Google Scholar
  28. Gokceoglu C, Sonmez H, Nefeslioglu HA, Duman TY, Can T (2005) The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng Geol 81(1):65–83. Google Scholar
  29. Gorum T, Fan X, van Westen CJ, Huang RQ, Xu Q, Tang C, Wang G (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133(3–4):152–167. Google Scholar
  30. Gursoy H, Tatar O, Akpınar Z, Polat A, Mesci L, Tuncer D (2013) New observations on the 1939 Erzincan earthquake surface rupture on the Kelkit Valley segment of the North Anatolian Fault Zone, Turkey. J Geodyn 65:259–271. Google Scholar
  31. Haque U, Blum P, Da Silva PF, Andersen P, Pilz J, Chalov SR, Malet JP, Auflič MJ, Andres N, Poyiadji E, Lamas PC (2016) Fatal landslides in Europe. Landslides 13(6):1545–1554. Google Scholar
  32. Havenith HB, Torgoev A, Schlögel R, Braun A, Torgoev I, Ischuk A (2015) Tien Shan geohazards database: landslide susceptibility analysis. Geomorphology 249:32–43. Google Scholar
  33. Herece E (2008) Dogu Anadolu Fayi (DAF) Atlasi/Atlas of East Anatolian Fault (DAF). Maden Tetkikve Arama Genel Mudurlugu Ozel Yayinlar Serisi 13 Ankara, 177 p. (In Turkish with English Abstract)Google Scholar
  34. Herece E, Akay E (2003) Kuzey Anadolu Fayi (KAF) Atlasi/Atlas of North Anatolian Fault (NAF). Maden Tetkikve Arama Genel Mudurlugu Ozel Yayinlar Serisi 2. (In Turkish with English Abstract)Google Scholar
  35. Hermanns RL, Strecker MR (1999) Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina. Geol Soc Am Bull 111(6):934–948.<0934:SALCOL>2.3.CO;2 Google Scholar
  36. Hermanns RL, Trauth MH, Niedermann S, McWilliams M, Strecker MR (2000) Tephrochronologic constraints on temporal distribution of large landslides in Northwest Argentina. J Geol 108(1):35–52. Google Scholar
  37. Hermanns RL, Niedermann S, Garcia AV, Gomez JS, Strecker MR (2001) Neotectonics and catastrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentina. Geology 29(7):619–622.<0619:NACFOM>2.0.CO;2 Google Scholar
  38. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. Google Scholar
  39. Jolivet L, Faccenna C (2000) Mediterranean extension and the Africa-Eurasia collision. Tectonics 19(6):1095–1106. Google Scholar
  40. Karaca M, Deniz A, Tayanc M (2000) Cyclone track variability over Turkey in association with regional climate. Int J Climatol 20(10):1225–1236.<1225::AID-JOC535>3.0.CO;2-1 Google Scholar
  41. Ketin I (1948) Ober die tektonisch-mechanischen Folgerungenaus den grossenanatolischen Erdbeben des letzten Dezenniums. Geol Rundsch 36:77–83Google Scholar
  42. Korup O (2004) Landslide-induced river channel avulsions in mountain catchments of Southwest New Zealand. Geomorphology 63(1–2):57–80. Google Scholar
  43. Korup O (2005) Distribution of landslides in Southwest New Zealand. Landslides 2(1):43–51. Google Scholar
  44. Korup O, Montgomery DR (2008) Tibetan plateau river incision inhibited by glacial stabilization of the Tsangpo gorge. Nature 455(7214):786–789. Google Scholar
  45. Korup O, Weidinger JT (2011) Rock type, precipitation, and the steepness of Himalayan threshold hillslopes. Geol Soc Lond, Spec Publ 353(1):235–249. Google Scholar
  46. Korup O, Strom AL, Weidinger JT (2006) Fluvial response to large rock-slope failures: examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand. Geomorphology 78:3–21. Google Scholar
  47. Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261(3–4):578–589. Google Scholar
  48. Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120(1–2):77–90. Google Scholar
  49. Lacroix P, Bièvre G, Pathier E, Kniess U, Jongmans D (2018) Use of Sentinel-2 images for the detection of precursory motions before landslide failures. Remote Sensing of Environment.
  50. Larsen IJ, Montgomery DR (2012) Landslide erosion coupled to tectonics and river incision. Nat Geosci 5(7):468–473. Google Scholar
  51. Larsen IJ, Almond PC, Eger A, Stone JO, Montgomery DR, Malcolm B (2014) Rapid soil production and weathering in the Western Alps, New Zealand. Science 1244908.
  52. McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res Solid Earth 105(B3):5695–5719. Google Scholar
  53. McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J Int 30(2):109–185. Google Scholar
  54. Meng QR, Hu JM, Wang E, Qu HJ (2006) Late Cenozoic denudation by large-magnitude landslides in the eastern edge of Tibetan Plateau. Earth Planet Sci Lett 243(1–2):252–267. Google Scholar
  55. Moix P, Beccaletto L, Kozur HW, Hochard C, Rosselet F, Stampfli GM (2008) A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics 451(1–4):7–39. Google Scholar
  56. Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201(3–4):481–489. Google Scholar
  57. Mota B, Mondini A, Malamud BD, Mihir M, Drake N (2014) Landslide detectability with coarse resolution imagery: a Sentinel-2 emulation study to access spectral landslide discrimination. In: EGU general assembly conference abstracts, vol 16. p 11958Google Scholar
  58. MTA (2002) 1: 500,000 scaled Turkish geology map series. MTA Genel Mudurlugu, AnkaraGoogle Scholar
  59. Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94(3–4):401–418. Google Scholar
  60. Nefeslioglu HA, Gokceoglu C, Sonmez H, Gorum T (2011) Medium-scale hazard mapping for shallow landslide initiation: the Buyukkoy catchment area (Cayeli, Rize, Turkey). Landslides 8(4):459–483. Google Scholar
  61. Ocakoglu F, Gokceoglu C, Ercanoglu M (2002) Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey. Geomorphology 42(3–4):329–341. Google Scholar
  62. Ocakoglu F, Kır O, Yılmaz İÖ, Açıkalın S, Erayık C, Tunoglu C, Leroy SA (2013) Early to mid-Holocene Lake level and temperature records from the terraces of Lake Sünnet in NW Turkey. Palaeogeogr Palaeoclimatol Palaeoecol 369:175–184. Google Scholar
  63. Okay AI, Tüysüz O (1999) Tethyan sutures of northern Turkey. Geol Soc Lond, Spec Publ 156(1):475–515. Google Scholar
  64. Okay AI, Sengör AMC, Görür N (1994) Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology 22(3):267–270.<0267:KHOTOO>2.3.CO;2 Google Scholar
  65. Ouimet WB, Whipple KX, Royden LH, Sun Z, Chen Z (2007) The influence of large landslides on river incision in a transient landscape: eastern margin of the Tibetan Plateau (Sichuan, China). Geol Soc Am Bull 119(11–12):1462–1476. Google Scholar
  66. Reilinger RE, McClusky SC, Oral MB, King RW, Toksoz MN, Barka AA, Kinik I, Lenk O, Sanli I (1997) Global positioning system measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. J Geophys Res Solid Earth 102(B5):9983–9999. Google Scholar
  67. Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliuv I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa–Arabia–Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. Google Scholar
  68. Safran BE, Anderson SW, Mills-Novoa M, House PK, Ely L (2011) Controls on large landslide distribution and implications for the geomorphic evolution of the southern interior Columbia River basin. GSA Bull 123(9–10):1851–1862. Google Scholar
  69. Saris F, Hannah DM, Eastwood WJ (2010) Spatial variability of precipitation regimes over Turkey. Hydrol Sci J–Journal des Sciences Hydrologiques 55(2):234–249. Google Scholar
  70. Saroglu F, Yılmaz Y (1986) Geological evolution and basin models during neotectonic episode in the eastern Anatolia. Bull Mineral Res Explor Inst Turk 107:63–83Google Scholar
  71. Savi S, Schildgen TF, Tofelde S, Wittmann H, Scherler D, Mey J, Alonso NR, Strecker MR (2016) Climatic controls on debris-flow activity and sediment aggradation: the Del Medio fan, NW Argentina. J Geophys Res Earth Surface 121(12):2424–2445. Google Scholar
  72. Schemmel F, Mikes T, Rojay B, Mulch A (2013) The impact of topography on isotopes in precipitation across the central Anatolian Plateau (Turkey). Am J Sci 313(2):61–80. Google Scholar
  73. Schildgen TF, Cosentino D, Bookhagen B, Niedermann S, Yildirim C, Echtler H, Wittmann H, Strecker MR (2012) Multi-phased uplift of the southern margin of the central Anatolian plateau, Turkey: a record of tectonic and upper mantle processes. Earth Planet Sci Lett 317:85–95. Google Scholar
  74. Schildgen TF, Yildirim C, Cosentino D, Strecker MR (2014) Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth Sci Rev 128:147–168. Google Scholar
  75. Schmidt KM, Montgomery DR (1995) Limits to relief. Science 270(5236):617–620. Google Scholar
  76. Sendir H, Yılmaz I (2002) Structural, geomorphological and geomechanical aspects of the Koyulhisar landslides in the North Anatolian Fault Zone (Sivas, Turkey). Environ Geol 42(1):52–60. Google Scholar
  77. Sengör AMC (1979) The north Anatolian transform fault: its age, offset and tectonic significance. J Geol Soc 136(3):269–282. Google Scholar
  78. Sengör AMC (1987) Tectonics of the Tethysides: orogenic collage development in a collisional setting. Annu Rev Earth Planet Sci 15(1):213–244. Google Scholar
  79. Sengör AMC, Kidd WSF (1979) Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics 55(3–4):361–376. Google Scholar
  80. Sengör AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75(3–4):181–241. Google Scholar
  81. Sengör AMC, Görür N, Saroglu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (eds) Strike-slip deformation, basin formation and sedimentation. Society of Economic Paleontolgists and Mineralgists. Special Publications 37, pp 227–264.
  82. Sengör AMC, Tüysüz O, Imren C, Sakınc M, Eyidoğan H, Görür N, Le Pichon X, Rangin C (2005) The North Anatolian fault: a new look. Annu Rev Earth Planet Sci 33:37–112. Google Scholar
  83. Seymen I (1975) Kelkit Vadisi Kesiminde Kuzey Anadolu Fay Zonunun Tektonik Özelliği: DoktoraTezi, İstanbul Teknik Üniversitesi, Maden Fakültesi, İstanbul (in Turkish)Google Scholar
  84. Strecker MR, Marrett R (1999) Kinematic evolution of fault ramps and its role in development of landslides and lakes in the northwestern Argentine Andes. Geology 27(4):307–310.<0307:KEOFRA>2.3.CO;2 Google Scholar
  85. Strom AL (1998) Giant ancient rock slides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan. Landslide News 11:20–23Google Scholar
  86. Strom AL, Korup O (2006) Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan. Landslides 3(2):125–136. Google Scholar
  87. Stumpf A, Marc O, Malet JP, Michea D (2017) Sentinel-2 for rapid operational landslide inventory mapping. In: EGU general assembly conference abstracts, vol 19. p 4449Google Scholar
  88. Tan O, Tapirdamaz MC, Yoruk A (2008) The earthquake catalogues for Turkey. Turk J Earth Sci 17(2):405–418Google Scholar
  89. Tanyas H, Allstadt KE, van Westen CJ (2018) An updated method for estimating landslide-event magnitude. Earth Surf Process Landf 43:1836–1847. Google Scholar
  90. Tatli H, Dalfes NH, Mentes S (2004) A statistical downscaling method for monthly total precipitation over Turkey. Int J Climatol 24:161–180. Google Scholar
  91. Turkes M (1996) Spatial and temporal analysis of annual rainfall variations in Turkey. Int J Climatol 16(9):1057–1076.<1057::AID-JOC75>3.0.CO;2-D Google Scholar
  92. Ulusay R, Tuncay E, Sonmez H, Gokceoglu C (2004) An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey. Eng Geol 74(3–4):265–291. Google Scholar
  93. Ulusay R, Aydan Ö, Kılıc R (2007) Geotechnical assessment of the 2005 Kuzulu landslide (Turkey). Eng Geol 89(1–2):112–128. Google Scholar
  94. Ustaomer T, Robertson AH (2010) Late Palaeozoic-Early Cenozoic tectonic development of the Eastern Pontides (Artvin area), Turkey: stages of closure of Tethys along the southern margin of Eurasia. Geol Soc Lond, Spec Publ 340(1):281–327. Google Scholar
  95. van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3–4):112–131. Google Scholar
  96. Yildirim C, Tüysüz O (2017) Estimation of the long-term slip, surface uplift and block rotation along the northern strand of the North Anatolian fault zone: inferences from geomorphology of the Almacık Block. Geomorphology 297:55–68. Google Scholar
  97. Yildirim C, Schildgen TF, Echtler H, Melnick D, Strecker MR (2011) Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault: implications for the northern margin of the Central Anatolian Plateau, Turkey. Tectonics 30(5).
  98. Yilmaz Y, Tüysüz O, Yigitbas E, Genç SC, Sengör AMC (1997) Geology and tectonic evolution of the Pontides. In: Robinson AG (ed) Regional and petroleum geology of the Black Sea and surrounding region, AAPG Mem 68, p 183–226Google Scholar
  99. Yokoyama R, Shirasawa M, Pike RJ (2002) Visualizing topography by openness: a new application of image processing to digital elevation models. Photogramm Eng Remote Sens 68(3):257–266Google Scholar
  100. Zabci C, Akyuz HS, Karabacak V, Sançar T, Altunel E, Gürsoy H, Tatar O (2011) Palaeoearthquakes on the Kelkit Valley segment of the North Anatolian Fault, Turkey: implications for the surface rupture of the historical 17 August 1668 Anatolian earthquake. Turk J Earth Sci 20(4):411–427. Google Scholar
  101. Zor E, Sandvol E, Gürbüz C, Türkelli N, Seber D, Barazangi M (2003) The crustal structure of the East Anatolian plateau (Turkey) from receiver functions. Geophys Res Lett 30(24).

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Eurasia Institute of Earth SciencesIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations