Advertisement

Landslides

, Volume 16, Issue 3, pp 571–584 | Cite as

Landslide susceptibility and mobilization rates in the Mount Elgon region, Uganda

  • Jente BroeckxEmail author
  • Michiel Maertens
  • Moses Isabirye
  • Matthias Vanmaercke
  • Betty Namazzi
  • Jozef Deckers
  • Joseph Tamale
  • Liesbet Jacobs
  • Wim Thiery
  • Matthieu Kervyn
  • Liesbet Vranken
  • Jean Poesen
Original Paper

Abstract

Mount Elgon in Eastern Uganda is one of the most landslide-prone regions in Africa. This extinct shield volcano is characterized by steep slopes, intense precipitation, and fertile lands supporting a dense human population. As a result, landslides frequently cause damage and many fatalities. Apart from the need for a landslide susceptibility assessment, insight into the landslide mobilization rates [ton/km2/y] is required to assess the geomorphological importance of landslides. Such quantitative information is scarce for many regions around the world and particularly for Africa. We therefore compiled a calibration dataset of 653 landslides (514 slides and 139 rockfalls). Additionally, a second dataset of over 400 landslides was independently collected for validation purposes. To determine a logistic landslide susceptibility model, we used Monte Carlo simulations that selected different subsets of the calibration dataset to test the significance of the considered environmental variables. Susceptibility maps for all landslide types and for rockfalls were constructed for the Mount Elgon region in Uganda. In both maps, topography is by far the most significant factor controlling landslide susceptibility. Including lithology and soil moisture, further improved the model predictions. The models explain about 55% and 85% of the observed variance in landslide occurrence for all landslide types and for rockfalls respectively. The average calculated landslide frequency and mobilization rate for the landslide affected area are respectively 0.04 landslides/km2/y and 750 ton/km2/y. Landslide size is only weakly positively correlated with landslide susceptibility. Therefore, observed larger landslide mobilization rates correlating with higher landslide susceptibilities result from larger landslide numbers rather than from larger landslides. Our research highlights the relevance of detailed and long-term landslide mapping at the regional scale in data-scarce areas for regional planning and risk reduction strategies, as an improvement to continental and global susceptibility models, but also to assess the geomorphological importance of landslides as an erosion process.

Keywords

Mass movement Rockfall Landslide inventory Landslide susceptibility Landslide mobilization rate Landslide risk East Africa 

Abbreviations

AIC

Akaike information criterion

AUC

Area under the ROC curve

LMR

Landslide mobilization rate

LSS

Landslide susceptibility

ROC

Receiver operating characteristic

Notes

Acknowledgements

The authors acknowledge the cooperation of all local communities in the Mt. Elgon region. We are also very grateful to Lawrence Guloba for facilitating our field work with his excellent car driving skills in challenging conditions.

Funding information

This research received financial support of VLIR-UOS (Surelive project), which supports partnerships between universities in Flanders and in the Global South, and BELSPO Brain.be AfReSlide project (BR/121/A2/AfReSlide).

Supplementary material

10346_2018_1085_MOESM1_ESM.xlsx (156 kb)
online resource 1 excel sheet with information on mapped landslides. (XLSX 156 kb)
10346_2018_1085_Fig12_ESM.png (4.3 mb)
online resource 2

landslide susceptibility map for all landslide types (PNG 4377 kb)

10346_2018_1085_MOESM2_ESM.tif (32.7 mb)
High resolution image (TIF 33473 kb)
10346_2018_1085_Fig13_ESM.png (2.8 mb)
online resource 3

rockfall susceptibility map (PNG 2826 kb)

10346_2018_1085_MOESM3_ESM.tif (33 mb)
High resolution image (TIF 33801 kb)

References

  1. Akkermans T, Thiery W, Van Lipzig NPM (2014) The regional climate impact of a realistic future deforestation scenario in the Congo basin. J Clim 27:2714–2734.  https://doi.org/10.1175/JCLI-D-13-00361.1 CrossRefGoogle Scholar
  2. Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47:107–124.  https://doi.org/10.1016/S0169-555X(02)00083-1 CrossRefGoogle Scholar
  3. Blahut J, van Westen CJ, Sterlacchini S (2010) Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 119:36–51.  https://doi.org/10.1016/j.geomorph.2010.02.017 CrossRefGoogle Scholar
  4. Broeckx J, Vanmaercke M, Balteanu D et al (2016) Linking landslide susceptibility to sediment yield at regional scale: application to Romania. Geomorphology 268:222–232.  https://doi.org/10.1016/j.geomorph.2016.06.012 CrossRefGoogle Scholar
  5. Broeckx J, Vanmaercke M, Duchateau R, Poesen J (2018) A data-based landslide susceptibility map of Africa. Earth Sci Rev 185:102–121.  https://doi.org/10.1016/j.earscirev.2018.05.002 CrossRefGoogle Scholar
  6. Bursac Z, Gauss CH, Williams DK, Hosmer DW (2008) Purposeful selection of variables in logistic regression. Source Code Biol Med 3:1–8.  https://doi.org/10.1186/1751-0473-3-17 CrossRefGoogle Scholar
  7. Claessens L, Schoorl JM, Veldkamp a (2007) Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: an application for northern New Zealand. Geomorphology 87:16–27.  https://doi.org/10.1016/j.geomorph.2006.06.039 CrossRefGoogle Scholar
  8. Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, van den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263.  https://doi.org/10.1007/s10064-013-0538-8 Google Scholar
  9. Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece area, Istanbul, Turkey. Environ Geol 51:241–256.  https://doi.org/10.1007/s00254-006-0322-1 CrossRefGoogle Scholar
  10. Frattini P, Crosta GB (2013) The role of material properties and landscape morphology on landslide size distributions. Earth Planet Sci Lett 361:310–319.  https://doi.org/10.1016/j.epsl.2012.10.029 CrossRefGoogle Scholar
  11. Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181.  https://doi.org/10.5194/nhess-18-2161-2018 CrossRefGoogle Scholar
  12. Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 162:227–252.  https://doi.org/10.1016/j.earscirev.2016.08.011 CrossRefGoogle Scholar
  13. Goetz JN, Guthrie RH, Brenning A (2011) Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology 129:376–386.  https://doi.org/10.1016/j.geomorph.2011.03.001 CrossRefGoogle Scholar
  14. Guns M, Vanacker V (2013) Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes. Environ Earth Sci 70:2941–2952.  https://doi.org/10.1007/s12665-013-2352-9 CrossRefGoogle Scholar
  15. Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184.  https://doi.org/10.1016/j.geomorph.2006.04.007 CrossRefGoogle Scholar
  16. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66.  https://doi.org/10.1016/j.earscirev.2012.02.001 CrossRefGoogle Scholar
  17. Jacobs L, Dewitte O, Poesen J, Delvaux D, Thiery W, Kervyn M (2016a) The Rwenzori Mountains, a landslide-prone region? Landslides 13:519–536.  https://doi.org/10.1007/s10346-015-0582-5 CrossRefGoogle Scholar
  18. Jacobs L, Maes J, Mertens K, Sekajugo J, Thiery W, van Lipzig N, Poesen J, Kervyn M, Dewitte O (2016b) Reconstruction of a flash flood event through a multi-hazard approach: focus on the Rwenzori Mountains, Uganda. Nat Hazards 84:851–876.  https://doi.org/10.1007/s11069-016-2458-y CrossRefGoogle Scholar
  19. Jacobs L, Dewitte O, Poesen J, Maes J, Mertens K, Sekajugo J, Kervyn M (2017) Landslide characteristics and spatial distribution in the Rwenzori Mountains, Uganda. J Afr Earth Sci 134:917–930.  https://doi.org/10.1016/j.jafrearsci.2016.05.013 CrossRefGoogle Scholar
  20. Jacobs L, Dewitte O, Poesen J, Sekajugo J, Nobile A, Rossi M, Thiery W, Kervyn M (2018) Field-based landslide susceptibility assessment in a data-scarce environment: the populated areas of the Rwenzori Mountains. Nat Hazards Earth Syst Sci 18:105–124.  https://doi.org/10.5194/nhess-18-105-2018 CrossRefGoogle Scholar
  21. King G, Zeng L (2001) Logistic regression in rare events data. Polit Anal 9:137–163.  https://doi.org/10.1162/00208180152507597 CrossRefGoogle Scholar
  22. King BC, Le Bas MJ, Sutherland DS (1972) The history of the alkaline volcanoes and intrusive complexes of eastern Uganda and western Kenya. J Geol Soc Lond 128:173–205CrossRefGoogle Scholar
  23. Kirschbaum D, Stanley T, Zhou Y (2015) Spatial and temporal analysis of a global landslide catalog. Geomorphology 249:4–15.  https://doi.org/10.1016/j.geomorph.2015.03.016 CrossRefGoogle Scholar
  24. Kitutu MG, Muwanga A, Poesen J, Deckers JA (2009) Influence of soil properties on landslide occurrences in Bududa district , eastern Uganda. Afr J Agric Res 4:611–620.  https://doi.org/10.5897/AJAR09.158 Google Scholar
  25. Kleinbaum DG, Klein M (2010) Logistic regression: a self-learning text, 3rd edn. Springer-Verlag, New YorkCrossRefGoogle Scholar
  26. Knapen A, Kitutu MG, Poesen J, Breugelmans W, Deckers J, Muwanga A (2006) Landslides in a densely populated county at the footslopes of Mount Elgon (Uganda): characteristics and causal factors. Geomorphology 73:149–165.  https://doi.org/10.1016/j.geomorph.2005.07.004 CrossRefGoogle Scholar
  27. Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3:247–251.  https://doi.org/10.1038/ngeo776 CrossRefGoogle Scholar
  28. Maes J, Kervyn M, de Hontheim A, Dewitte O, Jacobs L, Mertens K, Vanmaercke M, Vranken L, Poesen J (2017) Landslide risk reduction measures: a review of practices and challenges for the tropics. Prog Phys Geogr 41:191–221.  https://doi.org/10.1177/0309133316689344 CrossRefGoogle Scholar
  29. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslides, earthquakes, and erosion. Earth Planet Sci Lett 229:45–59.  https://doi.org/10.1016/j.epsl.2004.10.018 CrossRefGoogle Scholar
  30. Mertens K, Jacobs L, Maes J, Kabaseke C, Maertens M, Poesen J, Kervyn M, Vranken L (2016) The direct impact of landslides on household income in tropical regions: a case study from the Rwenzori Mountains in Uganda. Sci Total Environ 550:1032–1043.  https://doi.org/10.1016/j.scitotenv.2016.01.171 CrossRefGoogle Scholar
  31. Messenzehl K, Meyer H, Otto JC, Hoffmann T, Dikau R (2017) Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps) — a multivariate modeling approach. Geomorphology 287:29–45.  https://doi.org/10.1016/j.geomorph.2016.01.008 CrossRefGoogle Scholar
  32. Mugagga F, Kakembo V, Buyinza M (2012a) A characterisation of the physical properties of soil and the implications for landslide occurrence on the slopes of Mount Elgon, eastern Uganda. Nat Hazards 60:1113–1131.  https://doi.org/10.1007/s11069-011-9896-3 CrossRefGoogle Scholar
  33. Mugagga F, Kakembo V, Buyinza M (2012b) Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides. Catena 90:39–46.  https://doi.org/10.1016/j.catena.2011.11.004 CrossRefGoogle Scholar
  34. Oleson KW, Niu GY, Yang ZL, Lawrence DM, Thornton PE, Lawrence PJ, Stöckli R, Dickinson RE, Bonan GB, Levis S, Dai A, Qian T (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res Biogeosci 113.  https://doi.org/10.1029/2007JG000563
  35. Petley D (2012) Global patterns of loss of life from landslides. Geology 40:927–930.  https://doi.org/10.1130/G33217.1 CrossRefGoogle Scholar
  36. Petschko H, Brenning A, Bell R, Goetz J, Glade T (2014) Assessing the quality of landslide susceptibility maps - case study Lower Austria. Nat Hazards Earth Syst Sci 14:95–118.  https://doi.org/10.5194/nhess-14-95-2014 CrossRefGoogle Scholar
  37. Poesen J, Lavee H (1994) Rock fragments in top soils: significance and processes. Catena 23:1–28.  https://doi.org/10.1016/0341-8162(94)90050-7 CrossRefGoogle Scholar
  38. Pourghasemi HR, Rossi M (2017) Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theor Appl Climatol 130:1–25.  https://doi.org/10.1007/s00704-016-1919-2 CrossRefGoogle Scholar
  39. Reichenbach P, Rossi M, Malamud B et al (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91.  https://doi.org/10.1016/j.earscirev.2018.03.001 CrossRefGoogle Scholar
  40. Sassen M, Sheil D, Giller KE, ter Braak CJF (2013) Complex contexts and dynamic drivers: understanding four decades of forest loss and recovery in an east African protected area. Biol Conserv 159:257–268.  https://doi.org/10.1016/j.biocon.2012.12.003 CrossRefGoogle Scholar
  41. Schwingshackl C, Hirschi M, Seneviratne SI (2017) Quantifying spatiotemporal variations of soil moisture control on surface energy balance and near-surface air temperature. J Clim 30:7105–7124.  https://doi.org/10.1175/JCLI-D-16-0727.1 CrossRefGoogle Scholar
  42. Scott P, IUCN FCP, IUCN RO for EA (1998) From conflict to collaboration: people and forests at Mount Elgon, Uganda. IUCN: International Union for Conservation of Nature, GlandGoogle Scholar
  43. Sidle RC, Bogaard TA (2016) Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth Sci Rev 159:275–291.  https://doi.org/10.1016/j.earscirev.2016.05.013 CrossRefGoogle Scholar
  44. Simonetti A, Bell K (1995) Nd, Pb and Sr isotopic data from the Mount Elgon volcano, eastern Uganda-western Kenya: implications for the origin and evolution of nephelinite lavas. Lithos 36:141–153.  https://doi.org/10.1016/0024-4937(95)00011-4 CrossRefGoogle Scholar
  45. Stanley T, Kirschbaum DB (2017) A heuristic approach to global landslide susceptibility mapping. Nat Hazards 87:145–164.  https://doi.org/10.1007/s11069-017-2757-y CrossRefGoogle Scholar
  46. Steger S, Glade T (2017) The challenge of “trivial areas” in statistical landslide susceptibility modelling. In: Mikos M, Tiwari B, Yin Y, Sassa K (eds) Advancing culture of living with landslides. WLF 2017. Springer, Cham, p 1148Google Scholar
  47. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293.  https://doi.org/10.1126/science.3287615 CrossRefGoogle Scholar
  48. Thiery W, Davin EL, Panitz H-J, Demuzere M, Lhermitte S, van Lipzig N (2015) The impact of the African Great Lakes on the regional climate. J Clim 28:4061–4085.  https://doi.org/10.1175/JCLI-D-14-00565.1 CrossRefGoogle Scholar
  49. Thiery W, Davin EL, Seneviratne SI, Bedka K, Lhermitte S, van Lipzig NPM (2016) Hazardous thunderstorm intensification over Lake Victoria. Nat Commun 7(12786):1–15.  https://doi.org/10.1038/ncomms12786 Google Scholar
  50. UBOS (2017) The population of the regions and districts of Uganda according to census results. Citypopulation.de Quoting Uganda Bureau of Statistics (UBOS). http://citypopulation.de/php/uganda-admin.php. Accessed 26 Feb 2018
  51. UNISDR (2015) Sendai Framework for Disaster Risk Reduction 2015–2030. In: A/CONF.224/CRP.1. Sendai, Miyagi, Japan: UNISDR, 1–25Google Scholar
  52. Van Den Eeckhaut M, Vanwalleghem T, Poesen J et al (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410.  https://doi.org/10.1016/j.geomorph.2005.12.003 CrossRefGoogle Scholar
  53. Van Den Eeckhaut M, Poesen J, Govers G et al (2007) Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet Sci Lett 256:588–603.  https://doi.org/10.1016/j.epsl.2007.01.040 CrossRefGoogle Scholar
  54. Van Den Eeckhaut M, Hervás J, Jaedicke C et al (2012) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9:357–369.  https://doi.org/10.1007/s10346-011-0299-z CrossRefGoogle Scholar
  55. Van Eynde E, Dondeyne S, Isabirye M et al (2017) Impact of landslides on soil characteristics: implications for estimating their age. Catena 157:173–179.  https://doi.org/10.1016/j.catena.2017.05.003 CrossRefGoogle Scholar
  56. Vanmaercke M, Poesen J, Broeckx J, Nyssen J (2014) Sediment yield in Africa. Earth Sci Rev 136:350–368.  https://doi.org/10.1016/j.earscirev.2014.06.004 CrossRefGoogle Scholar
  57. Vannoppen W, Poesen J, Peeters P, de Baets S, Vandevoorde B (2016) Root properties of vegetation communities and their impact on the erosion resistance of river dikes. Earth Surf Process Landf 41:2038–2046.  https://doi.org/10.1002/esp.3970 CrossRefGoogle Scholar
  58. Vlaeminck P, Maertens M, Isabirye M, Vanderhoydonks F, Poesen J, Deckers S, Vranken L (2016) Coping with landslide risk through preventive resettlement. Designing optimal strategies through choice experiments for the Mount Elgon region, Uganda. Land Use Policy 51:301–311.  https://doi.org/10.1016/j.landusepol.2015.11.023 CrossRefGoogle Scholar
  59. Westerhof ABP, Härmä P, Isabirye E et al (2014) Geology and geodynamic development of Uganda with Explanation of the 1:1,000,000 -Scale Geological Map. Geol Surv Finland, Spec Pap 55Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jente Broeckx
    • 1
    Email author
  • Michiel Maertens
    • 1
  • Moses Isabirye
    • 2
  • Matthias Vanmaercke
    • 1
    • 3
  • Betty Namazzi
    • 2
  • Jozef Deckers
    • 1
  • Joseph Tamale
    • 2
  • Liesbet Jacobs
    • 1
  • Wim Thiery
    • 4
  • Matthieu Kervyn
    • 5
  • Liesbet Vranken
    • 1
  • Jean Poesen
    • 1
  1. 1.Department of Earth and Environmental SciencesKU LeuvenHeverleeBelgium
  2. 2.Faculty of Natural Resources and EnvironmentBusitema UniversityTororoUganda
  3. 3.Département de GéographieUniversité de LiègeLiègeBelgium
  4. 4.Department of Hydrology and Hydraulic EngineeringVrije Universiteit BrusselBrusselsBelgium
  5. 5.Department of Geography, Earth System ScienceVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations