Advertisement

Landslides

, Volume 15, Issue 7, pp 1359–1375 | Cite as

Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide (Sichuan, China)

  • Gianvito Scaringi
  • Xuanmei Fan
  • Qiang Xu
  • Chun Liu
  • Chaojun Ouyang
  • Guillem Domènech
  • Fan Yang
  • Lanxin Dai
Original Paper

Abstract

Rock avalanches represent a serious risk for human lives, properties, and infrastructures. On June 24, 2017, a catastrophic landslide destroyed the village of Xinmo (Maoxian County, Sichuan, China) causing a large number of fatalities. Adjacent to the landslide source area, further potentially unstable masses were identified. Among them, a 4.5-million m3 body, displaced during the landslide event by about 40 m, raised serious concerns. Field monitoring and a reliable secondary risk assessment are fundamental to protect the infrastructure and the population still living in the valley. In this framework, the use of distinct element methods and continuum model methods to simulate the avalanche process was discussed. Various models (PFC, MatDEM, MassMov2D, Massflow) were used with the aim of reproducing the Xinmo landslide and, as predictive tools, simulating the kinematics and runout of the potentially unstable mass, which could cause a new catastrophic event. The models were all able to reproduce the first-order characteristics of the landslide kinematics and the morphology of the deposit, but with computational times differing by several orders of magnitude. More variability of the results was obtained from the simulations of the potential secondary failure. However, all models agreed that the new landslide could invest several still-inhabited buildings and block the course of the river again. Comparison and discussion of the performances and usability of the models could prove useful towards the enforcement of physically based (and multi-model) risk assessments and mitigation countermeasures.

Keywords

Landslide Numerical modeling Landslide risk assessment Rock avalanche Discrete element method Continuum model method 

Notes

Acknowledgements

This research is financially supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 41225011), the Fund for International Cooperation (NSFC-RCUK_NERC), Resilience to Earthquake-induced landslide risk in China (Grant No. 41661134010), the Fund for Creative Research Groups of China (Grant No. 41521002), and National Science Fund for Outstanding Young Scholars of China (Grant No. 41622206). The authors thank Dr. Weile Li, Dr. Xiujun Dong, Qing Yang, and Jing Ren for their supports in collecting the baseline data.

References

  1. Aaron J, McDougall S, Moore JR, Coe JA, Hungr O (2017) The role of initial coherence and path materials in the dynamics of three rock avalanche case histories. Geoenviron Dis 4(1):5.  https://doi.org/10.1186/s40677-017-0070-4 CrossRefGoogle Scholar
  2. Antolini F, Barla M (2015) Combining Finite-Discrete Numerical Modelling and Radar Interferometry for Rock Landslide Early Warning Systems. In: Lollino G et al (eds) Engineering Geology for Society and Territory, Volume 6. Springer, Cham, pp 705–708.  https://doi.org/10.1007/978-3-319-09060-3_126
  3. Begueria S, Van Asch TWJ, Malet J-P, Gröndahl S (2009a) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazards Earth Syst Sci 9(6):1897–1909.  https://doi.org/10.5194/nhess-9-1897-2009 CrossRefGoogle Scholar
  4. Begueria S, Van Hees MJ, Geertsema M (2009b) Comparison of three landslide runout models on the Turnoff Creek rock avalanche, British Columbia. In: Malet JP, Remaître A, Bogaard T (eds) Landslide processes: from geomorphology mapping to dynamic modelling. CERG Editions, Strasbourg, pp 243–247.  https://doi.org/10.13140/2.1.4569.37
  5. Cascini L, Cuomo S, Guida D (2008) Typical source areas of May 2008 flow-like mass movements in the Campania region, southern Italy. Eng Geol 96(3):107–125.  https://doi.org/10.1016/j.enggeo.2007.10.003 CrossRefGoogle Scholar
  6. Chang KJ, Taboada A (2009) Discrete element simulation of the Jiufengershan rock and soil avalanche triggered by the 1999 Chi-Chi earthquake. Taiwan. J Geophys Res Earth Surf 114:F03.  https://doi.org/10.1029/2008JF001075 Google Scholar
  7. Chigira M (2009) September 2005 rain-induced catastrophic rockslides on slopes affected by deep-seated gravitational deformations, Kyushu, southern Japan. Eng Geol 108(1–2):1–15.  https://doi.org/10.1016/j.enggeo.2009.03.005 CrossRefGoogle Scholar
  8. Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271.  https://doi.org/10.1139/t96-005 CrossRefGoogle Scholar
  9. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (Eds) Landslides: investigation and mitigation. Sp. Rep. 247, Transportation Research Board, National Research Council. National Academy Press, Washington DC, pp 36–75Google Scholar
  10. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65.  https://doi.org/10.1680/geot.1979.29.1.47 CrossRefGoogle Scholar
  11. Dai Z, Huang Y, Cheng H, Xu Q (2016) SPH model for fluid–structure interaction and its application to debris flow impact estimation. Landslides 14(3):917–928.  https://doi.org/10.1007/s10346-016-0777-4 CrossRefGoogle Scholar
  12. Evans SG, Guthrie RH, Roberts NJ, Bishop NF (2007) The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain. Nat Hazards Earth Syst Sci 7(1):89–101.  https://doi.org/10.5194/nhess-7-89-2007 CrossRefGoogle Scholar
  13. Fan X, Xu Q, Scaringi G, Dai L, Li W, Dong X, Zhu X, Pei X (2017) Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides 14(6):2129–2146.  https://doi.org/10.1007/s10346-017-0907-7 CrossRefGoogle Scholar
  14. Giani G, Migliazza M, Segalini A (2004) Experimental and theoretical studies to improve rock fall analysis and protection work design. Rock Mech Rock Eng 37(5):369–389.  https://doi.org/10.1007/s00603-004-0027-2 CrossRefGoogle Scholar
  15. Gorum T, Fan X, Van Westen CJ, Huang R, Xu Q, Tang C, Wang G (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133(3-4):152–167.  https://doi.org/10.1016/j.geomorph.2010.12.030 CrossRefGoogle Scholar
  16. Guo D, Hamada M, He C, Wang Y, Zou Y (2014) An empirical model for landslide travel distance prediction in Wenchuan earthquake area. Landslides 11(2):281–291.  https://doi.org/10.1007/s10346-013-0444-y CrossRefGoogle Scholar
  17. Handwerger AL, Rempel AW, Skarbek RM, Roerin JJ, Hilley GE (2016) Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides. PNAS 113(37):10281–10286.  https://doi.org/10.1073/pnas.1607009113 CrossRefGoogle Scholar
  18. Hovius N, Meunier P, Lin CW, Chen H, Chen YG, Dadson S, Horng MJ, Lines M (2011) Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth Planet Sci Lett 304(3-4):347–355.  https://doi.org/10.1016/j.epsl.2011.02.005 CrossRefGoogle Scholar
  19. Hu W, Scaringi G, Xu Q, Pei Z, Van Asch TWJ, Hicher P-Y (2017a) Sensitivity of the initiation and runout of flowslides in loose granular deposits to the content of small particles: an insight from flume tests. Eng Geol 231:34–44.  https://doi.org/10.1016/j.enggeo.2017.10.001 CrossRefGoogle Scholar
  20. Hu W, Wang G, Xu Q, Scaringi G, McSaveney M, Hicher P-Y (2017b) Shear resistance variations in experimentally sheared mudstone granules: a possible shear-thinning and thixotropic mechanism. Geophys Res Lett 44(21):11040–11050.  https://doi.org/10.1002/2017GL075261 CrossRefGoogle Scholar
  21. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(4):610–623.  https://doi.org/10.1139/t95-063 CrossRefGoogle Scholar
  22. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194.  https://doi.org/10.1007/s10346-013-0436-y CrossRefGoogle Scholar
  23. Igwe O, Wang F, Sassa K, Fukuoka H (2014) The laboratory evidence of phase transformation from landslide to debris flow. Geosci J 18(1):31–44.  https://doi.org/10.1007/s12303-013-0049-4 CrossRefGoogle Scholar
  24. Itasca, Consulting Group Inc (2008) PFC3D particle flow code in 3 dimensions. User’s Guide, MinneapolisGoogle Scholar
  25. Itasca, Consulting Group Inc (2014) PFC version 5.0, general purpose distinct-element modeling framework, Minneapolis, USA, https://www.itascacg.com/software/pfc. Accessed on 3rd Jan 2018
  26. Iverson RM, George DL, Allstadt K, Reid ME, Collins BD, Vallance JW, Schilling SP, Godt JW, Cannon CM, Magirl CS, Baum RL (2015) Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth Planet Sci Lett 412:197–208.  https://doi.org/10.1016/j.epsl.2014.12.020 CrossRefGoogle Scholar
  27. Johnson BC, Campbell CS, Melosh HJ (2016) The reduction of friction in long runout landslides as an emergent phenomenon. J Geophys Res Earth Surf 121(5):881–889.  https://doi.org/10.1002/2015JF003751 CrossRefGoogle Scholar
  28. Karssenberg D, Burrough PA, Sluiter R, De Jong K (2001) The PCRaster software and course materials for teaching numerical modelling in the environmental sciences. Trans GIS 5(2):99–110.  https://doi.org/10.1111/1467-9671.00070 CrossRefGoogle Scholar
  29. Keefer DK, Larsen MC (2007) Assessing landslide hazards. Science 316(5828):1136–1138.  https://doi.org/10.1126/science.1143308 CrossRefGoogle Scholar
  30. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63(3–4):301:331–301:331.  https://doi.org/10.1016/S0013-7952(01)00090-4 Google Scholar
  31. Lin SS, Lo CM, Lin YC (2017) Investigating the deformation and failure characteristics of argillite consequent slope using discrete element method and Burgers model. Environ Earth Sci 76(2):81.  https://doi.org/10.1007/s12665-017-6401-7 CrossRefGoogle Scholar
  32. Liu C (2017) MatDEM: fast GPU matrix computing of discrete element method. Nanjing University, P.R. China, http://matdem.com. Accessed on 3rd Jan 2018
  33. Liu C, Pollard DD, Shi B (2013) Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. J Geophys Res Solid Earth 118(1):71–82.  https://doi.org/10.1029/2012JB009615 CrossRefGoogle Scholar
  34. Liu W, He S, Li X (2016b) A finite volume method for two-phase debris flow simulation that accounts for the pore-fluid pressure evolution. Environ Earth Sci 75(3):206.  https://doi.org/10.1007/s12665-015-4920-7
  35. Liu C, Pollard DD, Gu K, Shi B (2016a) Mechanism of formation of wiggly compaction bands in porous sandstone: 2. Numerical simulation using discrete element method. J Geophys Res Solid Earth 120(12):8153–8168.  https://doi.org/10.1002/2015JB012374 CrossRefGoogle Scholar
  36. Liu W, He S, Li X, Xu Q (2016c) Two-dimensional landslide dynamic simulation based on a velocity-weakening friction law. Landslides 13(5):957–965.  https://doi.org/10.1007/s10346-015-0632-z CrossRefGoogle Scholar
  37. Liu C, Xu Q, Shi B, Deng S, Zhu H (2017) Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks. Comput Geosci 103:12–20.  https://doi.org/10.1016/j.cageo.2017.03.003 CrossRefGoogle Scholar
  38. Lo CM, Lin ML, Tang CL, Hu JC (2011) A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Eng Geol 123(1-2):22–39.  https://doi.org/10.1016/j.enggeo.2011.07.00 CrossRefGoogle Scholar
  39. Lo CM, Huang WK, Lin ML (2016a) Earthquake-induced deep-seated landslide and landscape evolution process at Hungtsaiping, Nantou County, Taiwan. Environ Earth Sci 75(8):645.  https://doi.org/10.1007/s12665-016-5474-z CrossRefGoogle Scholar
  40. Lo CM, Li HH, Ke CC (2016b) Kinematic model of a translational slide in the Cidu section of the Formosan freeway. Landslides 13(1):141–151.  https://doi.org/10.1007/s10346-015-0650-x CrossRefGoogle Scholar
  41. Lu Y, Tang CL, Chan YC, Hu JC, Chi CC (2014) Forecasting landslide hazard by the 3D discrete element method: a case study of the unstable slope in the Lushan hot spring district, central Taiwan. Eng Geol 183:14–30.  https://doi.org/10.1016/j.enggeo.2014.09.007 CrossRefGoogle Scholar
  42. Lucas A, Mangeney A, Ampuero J P (2014) Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat Commun 5:3417.  https://doi.org/10.1038/ncomms4417
  43. Manzanal DV, Drempetic B, Haddad M, Pastor M, Stickle M, Mira P (2016) Application of a new rheological model to rock avalanches: an SPH approach. Rock Mech Rock Eng 49(6):2353–2372.  https://doi.org/10.1007/s00603-015-0909-5 CrossRefGoogle Scholar
  44. Molinari ME, Cannata M, Begueria S, Ambrosi C (2012) GIS-based calibration of MassMov2D. Trans GIS 16(2):215–231.  https://doi.org/10.1111/j.1467-9671.2012.01316.x CrossRefGoogle Scholar
  45. Molinari ME, Cannata M, Meisina C (2014) r.massmov: an open-source landslide model for dynamic early warning systems. Nat Hazards 70(2):1153–1179.  https://doi.org/10.1007/s11069-013-0867-8 CrossRefGoogle Scholar
  46. Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3(2):159–173.  https://doi.org/10.1007/s10346-006-0036-1 CrossRefGoogle Scholar
  47. Okamoto T, Sakurai M, Tsuchiya S, Yoshimatsu H, Ogawa K, Wang G (2013) Secondary hazards associated with Coseismic landslide. In: Ugai K, Yagi H, Wakai A (eds) Earthquake-Induced Landslides. Springer, Berlin, Heidelberg, pp 77–82.  https://doi.org/10.1007/978-3-642-32238-9_8
  48. Ouyang C, He S, Xu Q, Luo Y, Zhang W (2013) A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Comput Geosci 52:1–10.  https://doi.org/10.1016/j.cageo.2012.08.02 CrossRefGoogle Scholar
  49. Ouyang C, He S, Tang C (2015a) Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area. Eng Geol 194:62–72.  https://doi.org/10.1016/j.enggeo.2014.07.012 CrossRefGoogle Scholar
  50. Ouyang C, He S, Xu Q (2015b) MacCormack-TVD finite difference solution for dam break hydraulics over erodible sediment beds. J Hydraul Eng ASCE 141(5):06014026.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0000986 CrossRefGoogle Scholar
  51. Ouyang C, Zhou K, Xu Q, Yin J, Peng D, Wang D, Li W (2017) Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides 14(2):705–718.  https://doi.org/10.1007/s10346-016-0764-9 CrossRefGoogle Scholar
  52. Parker RN, Hancox GT, Petley DN, Massey CI, Densmore AL, Rosser NJ (2015) Spatial distributions of earthquake-induced landslides and hillslope preconditioning in the northwest South Island, New Zealand. Earth Surf Dyn 3(4):501–525.  https://doi.org/10.5194/esurf-3-501-2015 CrossRefGoogle Scholar
  53. Pastor M, Fernandez Merodo JA, Gonzalez E, Mira P, Li T, Liu X (2004) Modelling of landslides: (I) failure mechanisms. In: Darve F, Vardoulakis I (eds) Degradations and Instabilities in Geomaterials, International Centre for Mechanical Sciences (Courses and Lectures) (vol 461). Springer, Vienna, pp 287–317.  https://doi.org/10.1007/978-3-7091-2768-1_10
  54. Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33(2):143–172.  https://doi.org/10.1002/nag.705 CrossRefGoogle Scholar
  55. Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930.  https://doi.org/10.1130/G33217.1 CrossRefGoogle Scholar
  56. Picarelli L (2010) Discussion on “A rapid loess flowslide triggered by irrigation in China” by D. Zhang et al. Landslides 7(2):203–205.  https://doi.org/10.1007/s10346-010-0196-x CrossRefGoogle Scholar
  57. Pirulli M (2016) Numerical simulation of possible evolution scenarios of the Rosone deep-seated gravitational slope deformation (Italian Alps, Piedmont). Rock Mech Rock Eng 49(6):2373–2388.  https://doi.org/10.1007/s00603-015-0857-0 CrossRefGoogle Scholar
  58. Pirulli M, Scavia C, Tararbra M (2015) On the use of numerical models for flow-like landslide simulation. In: Lollino G et al (eds) Engineering Geology for Society and Territory, (Volume 2). Springer, Cham, pp 1625–1628.  https://doi.org/10.1007/978-3-319-09057-3_289
  59. Poisel R, Preh A (2008) 3D landslide run out modelling using the particle flow code PFC3D. In: Chen Z et al (eds) Landslides and Engineered Slopes. From the Past to the Future. Proc 10th Intl Symp Landslides & Eng Slopes. CRC Press, London, pp 873–879.  https://doi.org/10.1201/9780203885284-c110
  60. Poisel R, Angerer H, Pollinger M (2009) Mechanics and velocity of the Lärchberg–Galgenwald landslide (Austria). Eng Geol 109(1-2):57–66.  https://doi.org/10.1016/j.enggeo.2009.01.002 CrossRefGoogle Scholar
  61. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364.  https://doi.org/10.1016/j.ijrmms.2004.09.011 CrossRefGoogle Scholar
  62. Qi S, Xu Q, Zhang B, Zhou Y, Lan H, Li L (2011) Source characteristics of long runout rock avalanches triggered by the 2008 Wenchuan earthquake, China. J Asian Earth Sci 40(4):896–906.  https://doi.org/10.1016/j.jseaes.2010.05.010 CrossRefGoogle Scholar
  63. Redaelli I, Ceccato F, Di Prisco C, Simonini P (2017) Solid-fluid transition in granular flows: MPM simulations with a new constitutive approach. Process Eng 175:80–85.  https://doi.org/10.1016/j.proeng.2017.01.028 Google Scholar
  64. Roback K, Clark MK, West J, Zekkos D, Li G, Gallen SF, Chamlagain D, Godt JW (2017) The size, distribution, and mobility of landslides caused by the 2015 Mw 7.8 Gorkha earthquake, Nepal. Geomorphology.  https://doi.org/10.1016/j.geomorph.2017.01.030
  65. Scaringi G, Di Maio C (2016) Influence of displacement rate on residual shear strength of clays. Procedia Earth Planet Sci 16:137–145.  https://doi.org/10.1016/j.proeps.2016.10.015 CrossRefGoogle Scholar
  66. Scaringi G, Hu W, Xu Q, Huang R (2017) Shear-rate-dependent behavior of clayey bi-material interfaces at landslide stress levels. Geophys Res Lett.  https://doi.org/10.1002/2017GL076214
  67. Shen Z, Jiang M, Thornton C (2016) DEM simulation of bonded granular material. Part I: contact model and application to cemented sand. Comput Geotech 75:192–209.  https://doi.org/10.1016/j.compgeo.2016.02.007 CrossRefGoogle Scholar
  68. Tang CL, Hu JC, Lin ML, Angelier J, Lu CY, Chan YC, Chu HT (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Eng Geol 106(1-2):1–19.  https://doi.org/10.1016/j.enggeo.2009.02.011 CrossRefGoogle Scholar
  69. Tang CL, Hu JC, Lin ML, Yuan RM, Cheng CC (2013) The mechanism of the 1941 Tsaoling landslide, Taiwan: insight from a 2D discrete element simulation. Environ Earth Sci 70(3):1005–1019.  https://doi.org/10.1007/s12665-012-2190-1 CrossRefGoogle Scholar
  70. Tang C, Van Westen CJ, Tanyas H, Jetten VG (2016) Analysing post-earthquake landslide activity using multi-temporal landslide inventories near the epicentral area of the 2008 Wenchuan earthquake. Nat Hazards Earth Syst Sci 16(12):2641–2655.  https://doi.org/10.5194/nhess-16-2641-2016 CrossRefGoogle Scholar
  71. Towhata I (2013) Long-term effects of earthquake-induced slope failures, 7th Int Conf Case Hist Geotech Eng, Chicago 10, http://scholarsmine.mst.edu/icchge/7icchge/session16/10
  72. Van Asch TWJ, Buma J, Van Beek PH (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30(1-2):25–32.  https://doi.org/10.1016/S0169-555X(99)00042-2 CrossRefGoogle Scholar
  73. Wei X, Chen N, Cheng Q, He N, Deng M, Tanoli J (2014) Long-term activity of earthquake-induced landslides: a case study from Qionghai Lake basin, southwest of China. J Mt Sci 11(3):607–624.  https://doi.org/10.1007/s11629-013-2970-4 CrossRefGoogle Scholar
  74. Xu T, Xu Q, Tang C, Ranjith PG (2013) The evolution of rock failure with discontinuities due to shear creep. Acta Geotech 8(6):567–581.  https://doi.org/10.1007/s11440-013-0244-5 CrossRefGoogle Scholar
  75. Xu Q, Fan X, Scaringi G (2018) Brief communication: post-seismic landslides, the tough lesson of a catastrophe. Nat Hazards Earth Syst Sci 18:397–403.  https://doi.org/10.5194/nhess-18-397-2018
  76. Yao L, Ma S, Platt JD, Niemeijer AR, Shimamoto T (2016) The crucial role of temperature in high-velocity weakening of faults: experiments on gouge using host blocks with different thermal conductivities. Geology 44(1):63–66.  https://doi.org/10.1130/G37310.1 CrossRefGoogle Scholar
  77. Yerro A, Alonso EE, Pinyol NM (2016) Run-out of landslides in brittle soils. Comput Geotech 80:427–439.  https://doi.org/10.1016/j.compgeo.2016.03.001 CrossRefGoogle Scholar
  78. Yin Y, Wang F, Sun P (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 6(2):139–152.  https://doi.org/10.1007/s10346-009-0148-5 CrossRefGoogle Scholar
  79. Yu B, Ma Y, Wu Y (2013) Case study of a giant debris flow in the Wenjia Gully, Sichuan Province, China. Nat Hazards 65(1):835–849.  https://doi.org/10.1007/s11069-012-0395-y CrossRefGoogle Scholar
  80. Zhan W, Fan X, Huang R, Pei X, Xu Q, Li W (2017) Empirical prediction for travel distance of channelized rock avalanches in the Wenchuan earthquake area. Nat Hazards Earth Syst Sci 17(6):833–844.  https://doi.org/10.5194/nhess-17-833-2017 CrossRefGoogle Scholar
  81. Zhang M, McSaveney MJ (2017) Rock-avalanche deposits store quantitative evidence on internal shear during runout. Geophys Res Lett 44(17):8814–8821.  https://doi.org/10.1002/2017GL073774 CrossRefGoogle Scholar
  82. Zhang M, Yin Y, McSaveney M (2016) Dynamics of the 2008 earthquake-triggered Wenchuan Creek rock avalanche, Qingping, Sichuan, China. Eng Geol 200:75–87.  https://doi.org/10.1016/j.enggeo.2015.12.008 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (SKLGP)Chengdu University of TechnologyChengduChina
  2. 2.Chengdu University of TechnologyChengduChina
  3. 3.Nanjing UniversityNanjingChina
  4. 4.Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina

Personalised recommendations