Skip to main content
Log in

Measuring and estimating the impact pressure of debris flows on bridge piers based on large-scale laboratory experiments

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

After the 2008 Wenchuan earthquake, mountainous areas in SW China are recognized as a region with highly active and perilous landslides and debris flows. The frequent impacts of debris flow are a major threat to bridge piers located in debris flow gullies. It is an important issue for guaranteeing the safety of railway bridges in areas prone to hazardous debris flows. Previous research has achieved significant results characterizing the initiation and mechanisms for debris flow, and their interactions with some structures. However, there has been little research on the dynamic pressure of debris flow on bridge pier caused by different debris flows. In this study, the measurement and estimation of the impact pressure and dynamic behavior of debris flows on scaled bridge piers were conducted. Nine pressure sensors were used to measure the impact pressure of debris flows. Flow velocities and flow depths were determined at the end of a flume using a high-speed camera. The results show that the impact pressure differed between different types of debris flows. The distribution of impact pressures from high-viscosity debris flows indicated three layers, with different features in individual event. In comparison, a layered structure was not observed in low-viscosity debris flows. Based on dimensional analyses, the impact pressure depended on Froude number (Fr) and Reynolds number (Re). For low-viscosity debris flows, the dimensionless impact pressures were power functions of Fr, while for high-viscosity debris flows, the dimensionless impact pressures were power functions of both Re and Fr. The impact frequencies of low-viscosity and high-viscosity debris flows showed considerable differences based on spectral analysis. Compared to high-viscosity debris flows, low-viscosity debris flows were characterized by relatively high velocity, strong striking pressure, and high impact frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant Nos. 41502297, 41790433, 41472325, and 41572303), the National Key Research and Development Program of China (Project No. 2017YFC1501000), the Key Projects in the National Science and Technology Pillar Program (2014BAL05B01), the China Postdoctoral Science Foundation (2017M612997), and the Research and Development Plan Project for Science and Technology of Ministry of Railways (Z2012-061, CLRQT-2015-012, 2012-Major-3). Their support is greatly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in collaboration between all the authors. Dongpo Wang and Siming He defined the research theme. Dongpo Wang and Yang Liu designed the experiment methods. Zheng Chen, Yang Liu, and Hao Tang carried out the laboratory experiments, analyzed the data, interpreted the results, and wrote the paper. Siming He co-designed experiments, discussed analyses, interpretation, and presentation. All the authors have contributed to this work and have seen and approved this manuscript.

Corresponding author

Correspondence to Siming He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Chen, Z., He, S. et al. Measuring and estimating the impact pressure of debris flows on bridge piers based on large-scale laboratory experiments. Landslides 15, 1331–1345 (2018). https://doi.org/10.1007/s10346-018-0944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-018-0944-x

Keywords

Navigation