Abstract
Large landslides and deep-seated gravitational slope deformations (DSGSD) represent an important geo-hazard in relation to the deformation of large structures and infrastructures and to the associated secondary landslides. DSGSD movements, although slow (from a few millimetres to several centimetres per year), can continue for very long periods, producing large cumulative displacements and undergoing partial or complete reactivation. Therefore, it is important to map the activity of such phenomena at a regional scale. Ground surface displacements at DSGSD typically range close to the detection limit of monitoring equipment but are suitable for synthetic aperture radar (SAR) interferometry. In this paper, permanent scatterers (PSInSAR™) and SqueeSAR™ techniques are used to analyse the activity of 133 DSGSD, in the Central Italian Alps. Statistical indicators for assigning a degree of activity to slope movements from displacement rates are discussed together with methods for analysing the movement and activity distribution within each landslide. In order to assess if a landslide is active or not, with a certain degree of reliability, three indicators are considered as optimal: the mean displacement rate, the activity index (ratio of active PS, displacement rate larger than standard deviation, overall PS) and the nearest neighbor ratio, which allows to describe the degree of clustering of the PS data. According to these criteria, 66% of the phenomena are classified as active in the monitored period 1992–2009. Finally, a new methodology for the use of SAR interferometry data to attain a classification of landslide kinematic behaviour is presented. This methodology is based on the interpretation of longitudinal ground surface displacement rate profiles in the light of numerical simulations of simplified failure geometries. The most common kinematic behaviour is rotational, amounting to 41 DSGSDs, corresponding to the 62.1% of the active phenomena.
Similar content being viewed by others
References
Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59(1-2):83–102. https://doi.org/10.1016/S0013-7952(00)00066-1
Agliardi F, Zanchi A, Crosta GB (2009) Tectonic vs gravitational morphostructures in the central eastern alps (Italy): constraints on the recent evolution of the mountain range. Tectonophysics 474(1-2):250–270. https://doi.org/10.1016/j.tecto.2009.02.019
Agliardi F, Crosta GB, Frattini P (2012) Slow rock-slope deformation. In: Clague JJ, Stead D (Eds.) Landslides: types, mechanisms and modeling. Cambridge University Press, https://doi.org/10.1017/CBO9780511740367.019
Agliardi F, Crosta GB, Frattini P, Malusà MG (2013) Giant non-catastrophic landslides and the long-term exhumation of the European alps. Earth Planet Sci Lett 365:263–274. https://doi.org/10.1016/j.epsl.2013.01.030
Allievi J, Ambrosi C, Ceriani M, Colesanti C, Crosta GB, Ferretti A, Fossati D (2003) Monitoring slow mass movements with the permanent Scatterers technique. In: geoscience and remote sensing symposium, 2003. IGARSS'03. Proceedings. IEEE Int 1:215–217
Ambrosi C, Crosta GB (2006) Large sackung along major tectonic features in the central alps. Eng Geol 83(1-3):183–200. https://doi.org/10.1016/j.enggeo.2005.06.031
Bigot-Cormier F, Braucher R, Bourlès D, Guglielmi Y, Dubar M, Stéphan JF (2005) Chronological constraints on processes leading to large active landslides. Earth Planet Sci Lett 235(1-2):141–150. https://doi.org/10.1016/j.epsl.2005.03.012
Bini A, Buoncristiani J-F, Couterrand S, Ellwanger D, Felber M. Florineth D, Graf HR, Keller O, Kelly M, Schlüchter C, Schoeneich P (2009) La Svizzera durante l'ultimo massimo glaciale (LGM) 1:500000 at https://opendata.swiss/it/dataset/die-schweiz-wahrend-des-letzteiszeitlichen-maximums-lgm-1-500000-vektorkarte1 (last access 09/09/2017)
Boeckli L, Brenning A, Gruber S, Noetzli J (2012) Permafrost distribution in the European alps: calculation and evaluation of an index map and summary statistics. Cryosphere 6(4):807–820. https://doi.org/10.5194/tc-6-807-2012
Booth AM, Lamb MP, Avouac JP, Delacourt C (2013) Landslide velocity, thickness, and rheology from remote sensing: la Clapière landslide, France. Geophys Res Lett 40(16):4299–4304. https://doi.org/10.1002/grl.50828
Bovenga F, Nutricato R, Refice A, Wasowski J (2006) Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas. Eng Geol 88(3-4):218–239. https://doi.org/10.1016/j.enggeo.2006.09.015
Bovenga F, Wasowski J, Nitti DO, Nutricato R, Chiaradia MT (2012) Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sens Environ 119:272–285. https://doi.org/10.1016/j.rse.2011.12.013
Bovis MJ (1990) Rock-slope deformation at affliction creek, southern Coast Mountains, British Columbia. Can J Earth Sci 27(2):243–254. https://doi.org/10.1139/e90-024
Calvello M, Peduto D, Arena L (2017) Combined use of statistical and DInSAR data analyses to define the state of activity of slow-moving landslides. Landslides 14(2):473–489. https://doi.org/10.1007/s10346-016-0722-6
Cascini L, Fornaro G, Peduto D (2010) Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng Geol 112(1-4):29–42. https://doi.org/10.1016/j.enggeo.2010.01.003
Ceriani M, Carelli M (2000) Carta delle precipitazioni medie, massime e minime annue del territorio alpino della Regione Lombardia (registrate nel periodo 1891–1990). Servizio Geologico, Ufficio Rischi Geologici Regione Lombardia In Italian
Colesanti C, Crosta GB, Ferretti A, Ambrosi C (2004) Monitoring and assessing the state of activity of slope instabilities by the permanent Scatterers technique. In: Evans SG, Martino S (eds) Massive rock slope failure: new models for hazard assessment, NATO advanced research workshop, Celano. Kluwer, Italy
Colesanti C, Wasowski J (2006) Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Eng Geo 88(3):173–199
Cossart E, Braucher R, Fort M, Bourlès DL, Carcaillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (upper durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 95(1):3–26. https://doi.org/10.1016/j.geomorph.2006.12.022
Crosta G (1996) Landslide, spreading, deep seated gravitational deformation: analysis, examples, problems and proposals. Geogr Fis Din Quat 19(2):297–313
Crosta G, Zanchi A (2000) Deep seated slope deformations. Huge, extraordinary, enigmatic phenomena. In landslides in research, theory and practice: proceedings of the 8th international symposium on landslides held in Cardiff on 26–30 June 2000, Thomas Telford publishing, pp 1–351
Crosta GB, Frattini P, Agliardi F (2013) Deep seated gravitational slope deformations in the European alps. Tectonophysics 605:13–33. https://doi.org/10.1016/j.tecto.2013.04.028
Crosta GB, Agliardi F, Rivolta C, Alberti S, Dei Cas L (2017) Long-term evolution and early warning strategies for complex rockslides by real-time monitoring. Landslides 4(5):1615–1632. https://doi.org/10.1007/s10346-017-0817-8
Cruden DM, Hu XQ (1993) Exhaustion and steady-state models for predicting landslide hazards in the Canadian Rocky Mountains. Geomorphology 8(4):279–285. https://doi.org/10.1016/0169-555X(93)90024-V
Curlander JC, McDonough RN (1991) Synthetic aperture radar systems and signal processing. Wiley-Interscience, New York
Eriksen HØ, Lauknes TR, Larsen Y, Corner GD, Bergh SG, Dehls J, Kierulf HP (2017) Visualizing and interpreting surface displacement patterns on unstable slopes using multi-geometry satellite SAR interferometry (2D InSAR). Remote Sens Environ 191:297–312. https://doi.org/10.1016/j.rse.2016.12.024
Ferretti A, Prati C, Rocca F (1999) Multibaseline InSAR DEM reconstruction: the wavelet approach. IEEE Trans Geosci Remote Sens 37(2):705–715. https://doi.org/10.1109/36.752187
Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38(5):2202–2212. https://doi.org/10.1109/36.868878
Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20. https://doi.org/10.1109/36.898661
Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49(9):3460–3470. https://doi.org/10.1109/TGRS.2011.2124465
Frattini P, Crosta GB, Allievi J (2013) Damage to buildings in large slope rock instabilities monitored with the PSInSAR™ technique. Remote Sens 5(10):4753–4773. https://doi.org/10.3390/rs5104753
Frattini P, Crosta GB (2013) The role of material properties and landscape morphology on landslide size distributions. Earth Planet Sci Lett 361:310–319. https://doi.org/10.1016/j.epsl.2012.10.029
Froitzheim N, Schmid SM, Conti P (1994) Repeated change from crustal shortening to orogen-parallel extension in the Austroalpine units of Graubünden. Eclogae Geol Helv 87:559–612
Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential radar interferometry. J Geophys Res : Solid Earth 94(B7):9183–9191. https://doi.org/10.1029/JB094iB07p09183
García-Davalillo JC, Herrera G, Notti D, Strozzi T, Álvarez-Fernández I (2014) DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study. Landslides 11(2):225–246. https://doi.org/10.1007/s10346-012-0379-8
Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Geotechnique 49(3):387–403. https://doi.org/10.1680/geot.1999.49.3.387
Henderson IHC, Lauknes TR, Osmundsen PT, Dehls J, Larsen Y, Redfield TF (2011) A structural, geomorphological and InSAR study of an active rock slope failure development. Geol Soc Lond, Spec Publ 351(1):185–199. https://doi.org/10.1144/SP351.10
Hippolyte JC, Bourlès D, Braucher R, Carcaillet J, Léanni L, Arnold M, Aumaitre G (2009) Cosmogenic 10Be dating of a sackung and its faulted rock glaciers, in the alps of savoy (France). Geomorphology 108(3-4):312–320. https://doi.org/10.1016/j.geomorph.2009.02.024
Hippolyte JC, Bourlès D, Léanni L, Braucher R, Chauvet F, Lebatard AE (2012) 10Be ages reveal > 12 ka of gravitational movement in a major sackung of the Western Alps (France). Geomorphology 171:139–153
Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611
Jaboyedoff M, Penna I, Pedrazzini A, Baroň I, Crosta GB (2013) An introductory review on gravitational-deformation induced structures, fabrics and modeling. Tectonophysics 605:1–12. https://doi.org/10.1016/j.tecto.2013.06.027
Lauknes TR, Shanker AP, Dehls JF, Zebker HA, Henderson IHC, Larsen Y (2010) Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sens Environ 114(9):2097–2109. https://doi.org/10.1016/j.rse.2010.04.015
Manzo M, Ricciardi GP, Casu F, Ventura G, Zeni G, Borgström S, Berardino P, Del Gaudio C, Lanari R (2006) Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry. J Volcanol Geotherm Res 151(4):399–416. https://doi.org/10.1016/j.jvolgeores.2005.09.010
Meisina C, Zucca F, Notti D, Colombo A, Cucchi A, Savio G, Giannico C, Bianchi M (2008) Geological interpretation of PSInSAR data at regional scale. Sensors 8(11):7469–7492. https://doi.org/10.3390/s8117469
McCalpin JP (1999) Criteria for determining the seismic significance of sackungen and other scarp-like landforms in mountainous regions. Techniques for identifying faults and determining their origins, U.S. Nuclear Regulatory Commission, Washington, pp 255–259
Miller DJ, Dunne T (1996) Topographic perturbations of regional stresses and consequent bedrock fracturing. J Geophys Res 101(B11):25523–25536. https://doi.org/10.1029/96JB02531
Mitchell A (2005) The ESRI guide to GIS analysis, volume 2. ESRI Press
Osmundsen PT, Henderson I, Lauknes TR, Larsen Y, Redfield TF, Dehls J (2009) Active normal fault control on landscape and rock-slope failure in northern Norway. Geology 37(2):135–138. https://doi.org/10.1130/G25208A.1
Radbruch-Hall DH (1978) Gravitational creep of rock masses on slopes. In: Voight B (ed) Rockslides and avalanches 1. Elsevier, Amsterdam, pp 607–657
Righini G, Pancioli V, Casagli N (2012) Updating landslide inventory maps using persistent Scatterer interferometry (PSI). Int J Remote Sens 33(7):2068–2096. https://doi.org/10.1080/01431161.2011.605087
Rott H, Scheuchl B, Siegel A, Grasemann B (1999) Monitoring very slow slope movements by means of SAR interferometry: a case study from a mass waste above a reservoir in the Ötztal alps, Austria. Geophys Res Lett 26(11):1629–1632. https://doi.org/10.1029/1999GL900262
Sanchez G, Rolland Y, Corsini M, Braucher R, Bourlès D, Arnold M, Aumaître G (2010) Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW alps. Geomorphology 117(1):1–13. https://doi.org/10.1016/j.geomorph.2009.10.019
Saroli MS, Stramondo S, Moro M, Doumaz F (2005) Movements detection of deep seated gravitational slope deformations by means of InSAR data and photogeological interpretation: northern Sicily case study. Terra Nova 17(1):35–43. https://doi.org/10.1111/j.1365-3121.2004.00581.x
Schmid SM, Fogenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the alpine orogen. Eclogae Geol Helv 97(1):93–117. https://doi.org/10.1007/s00015-004-1113-x
Schlögel R, Doubre C, Malet JP, Masson F (2015) Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorphology 231:314–330. https://doi.org/10.1016/j.geomorph.2014.11.031
Schlögel R, Malet JP, Doubre C, Lebourg T (2016) Structural control on the kinematics of the deep-seated la Clapière landslide revealed by L-band InSAR observations. Landslides 13(5):1005–1018. https://doi.org/10.1007/s10346-015-0623-0
Stead D, Eberhardt E, Coggan JS (2006) Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng Geol 83(1):217–235. https://doi.org/10.1016/j.enggeo.2005.06.033
Strozzi T, Farina P, Corsini A, Ambrosi C, Thüring M, Zilger J, Wiesmann A, Wegmüller U, Werner C (2005) Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2(3):193–201. https://doi.org/10.1007/s10346-005-0003-2
Tamburini A, Novali F, Frattini P, Crosta GB (2015) Recent advances in satellite radar data processing and their support to the characterization of DSGSDs in the alps. In engineering geology for society and territory – Vol. 2, Springer International Publishing, 609–612
Varnes DJ, Radbruch-Hall D, Savage WZ (1989) Topographic and structural conditions in areas of gravitational spreading of ridges in the western United States. US Geol Surv Prof Pap 1496:28
Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138. https://doi.org/10.1016/j.enggeo.2014.03.003
Werner C, Wegmuller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS’03), Toulouse, France, 21–25 July 2003; Volume 7, 4362–4364
Wirsig C, Zasadni J, Christl M, Akçar N, Ivy-Ochs S (2016) Dating the onset of LGM ice surface lowering in the high alps. Quat Sci Rev 143:37–50. https://doi.org/10.1016/j.quascirev.2016.05.001
Zanchi A, Crosta G, Stelluti G, Sterlacchini S (2002) 3D geological modeling for slope stability problems. The case study of the Corno Zuccone sackung, Val Taleggio (Italy). Mem Soc Geol Ital 57:585–594
Zienkiewicz OC, Taylor RL (1977) The finite element method, vol Vol. 3. McGraw-hill, London
Acknowledgements
The authors are deeply indebted to Andrea Valagussa, Roberta Ignagnaro, Luca Corno and Laura Frati for partly preparing the datasets. Elena Valbuzzi is thanked for the continuous support in maintaining the datasets. The authors thank Federico Agliardi for fruitful discussion on DSGSD distribution on the Alps. Finally, the authors are indebted to Massimo Ceriani, from Regione Lombardia and Alessandro Ferretti, from Tre-Altamira, for their help in providing PSInSAR™ and SqueeSAR™ data. This work has been supported by Fondazione Cariplo, grant no 2016-0757.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Frattini, P., Crosta, G.B., Rossini, M. et al. Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements. Landslides 15, 1053–1070 (2018). https://doi.org/10.1007/s10346-017-0940-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10346-017-0940-6