Skip to main content

RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls

Abstract

A rockfall is a mass instability event frequently observed in road cuts, open pit mines and quarries, steep slopes and cliffs. After its detachment, the rock mass may disaggregate and break due to the impact with the ground surface, thus producing new rock fragments. The consideration of the fragmentation of the rockfall mass is critical for the calculation of the trajectories of the blocks and the impact energies and for the assessment of the potential damage and the design of protective structures. In this paper, we present RockGIS, a GIS-based tool that simulates stochastically the fragmentation of the rockfall, based on a lumped mass approach. In RockGIS, the fragmentation is triggered by the disaggregation of the detached rock mass through the pre-existing discontinuities just before the impact with the ground. An energy threshold is defined in order to determine whether the impacting blocks break or not. The distribution of the initial mass between a set of newly generated rock fragments is carried out stochastically following a power law. The trajectories of the new rock fragments are distributed within a cone. The fragmentation model has been calibrated and tested with a 10,000 m3 rockfall that took place in 2011 near Vilanova de Banat, Eastern Pyrenees, Spain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modelling of rock falls. Int J Rock Mech Min Sci 40(4):455–471

    Article  Google Scholar 

  2. Bourrier F, Hungr O (2011) Rockfall dynamics: a critical review of collision and rebound models. In: Lambert S, Nicot F (eds) Rockfall engineering. ISTE Ltd and Wiley, p 175–203. doi:10.1002/9781118601532.ch6

  3. Bourrier F, Eckert N, Nicot F, Darve F (2009) Bayesian stochastic modeling of a spherical rock bouncing on a coarse soil. Natural Hazards and Earth Systems Sciences 9:831–846. doi:10.5194/nhess-9-831-2009

    Article  Google Scholar 

  4. Corominas J (2013) Avoidance and protection measures. In: Shroder JF (ed) Treatise on geomorphology, 7. Academic, San Diego, pp 259–272

  5. Corominas J, Mavrouli O, Santana D, Moya J (2012) Simplified approach for obtaining the block volume distribution of fragmental rockfalls. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Landslides and engineered slopes, 2, pp 1159–1164.

  6. Crosta GB, Agliardi F (2003) A methodology for physically based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407–422

    Article  Google Scholar 

  7. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, transportation research board special report, 247. National Research Council, USA, pp 36–75

    Google Scholar 

  8. Cuervo S (2015) Modélisation des éboulements rocheux par la méthode des éléments discrets: application aux évènem0065nts réels. Dissertation, Université de Grenoble. Retrieved from www.theses.fr/2015GREAI066.pdf

  9. di Prisco C, Vecchiotti M (2006) A rheological model for the description of boulder impacts on granular strata. Géotechnique 56(7):469–482. doi:10.1680/geot.2006.56.7.469

    Article  Google Scholar 

  10. Dorren LKA, Seijmonsbergen AC (2003) Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology 56(1–2): 49–64

  11. Dorren LKA, Berger F, Hir C, Mermin E, Tardif P (2005) Mechanisms, effects and management implications of rockfall in forests. For Ecol Manag, Volume 215, Issues 1–3: 183–195. ISSN 0378-1127, doi: 10.1016/j.foreco.2005.05.012.

  12. Dupire S, Bourrier F, Monnet JM, Bigot S, Borgniet L, Berger F, Curt T (2016) Novel quantitative indicators to characterize the protective effect of mountain forests against rockfall. Ecol Indic, 67: 98–107. ISSN 1470-160X, doi: 10.1016/j.ecolind.2016.02.023.

  13. Evans S, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  14. Ferrari F, Giacomini A, Thoeni K (2016) Qualitative rockfall hazard assessment: a comprehensive review of current practices. Rock Mech Rock Eng:1–58. doi:10.1007/s00603-016-0918-z

  15. Fornaro M, Peila D, Nebbia M (1990) Block falls on rock slopes—application of a numerical simulation program to some real cases. In: Proceedings of the 6th International Congress IAEG. Balkema, Rotterdam, pp 2173–2180

    Google Scholar 

  16. Frattini P, Crosta GB, Agliardi F (2012) Rockfall characterization and modeling. In: Clague JJ, Stead (eds) Landslides types, mechanisms and modeling. Cambridge University Press, Cambridge, pp 267–281. isbn:978-1-107-00206-7

  17. GeoRock3D© (GeoStru Software): commercial rockfall analysis software. http://www.geostru.com/en/rock-falls-3d.aspx

  18. Giacomini A, Buzzi O, Renard B, Giani G (2009) Experimental studies on fragmentation of rock falls on impact with rock surfaces. Int J Rock Mech Min Sci 46:708–715

    Article  Google Scholar 

  19. Giacomini A, Thoeni K, Lambert C, Booth S, Sloan SW (2012) Experimental study on rockfall drapery systems for open pit highwalls. Int J Rock Mech Min Sci, Volume 56: 171–181, ISSN 1365-1609, doi: 10.1016/j.ijrmms.2012.07.030.

  20. Gili JA, Ruiz R, Matas G, Corominas J, Lantada N, Núñez MA, Mavrouli O, Buill F, Moya J, Prades A, Moreno S (2016) Experimental study on rockfall fragmentation: in situ test design and firsts results. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds) Landslides and engineered slopes, 2. p 983–990

  21. Gischig V, Hungr O, Mitchell A, Bourrier F (2015) Pierre3D: a 3D stochastic rockfall simulator based on random ground roughness and hyperbolic restitution factors. Can Geotech J 52:1–14

    Article  Google Scholar 

  22. Grady DE, Kipp ME (1987) Dynamic rock fragmentation. In: Atkinson BK (ed) Fract Mech rock, 17. Academic, London

    Google Scholar 

  23. Hantz D, Rossetti JP, Servant F, D’Amato J (2014) Etude de la distribution des blocs dans un éboulement pour l’évaluation de l’aléa. Proceedings of Rock Slope Stability 2014, Marrakesh

  24. Hoek E (2000) Analysis of rockfall hazards. In: Hoek E (ed) Practical rock engineering. p 117–136

  25. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types—an update. Landslides 11:167–194. doi:10.1007/s10346-013-0436-y

    Article  Google Scholar 

  26. Lambert S, Bourrier F, Toe D (2013) Improving three-dimensional rockfall trajectory simulation codes for assessing the efficiency of protective embankments. Int J Rock Mech Min Sci 60:26–36 . doi:10.1016/j.ijrmms.2012.12.029ISSN 1365-1609

    Google Scholar 

  27. Lan H, Derek Martin C, Lim CH (2007) RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput Geosci 33(2):262–279

    Article  Google Scholar 

  28. Leine RI, Schweizer A, Christen M, Glover J, Bartelt P, Gerber W (2013) Simulation of rockfall trajectories with consideration of rock shape. Multibody Syst Dyn. doi:10.1007/s11044-013-9393-4

    Google Scholar 

  29. Li L, Lan H (2015) Probabilistic modeling of rockfall trajectories: a review. Bull Eng Geol Environ 1:1–14

    Google Scholar 

  30. Mancini R, Del Greco O, Fornaro M, Patrucco M (1981) Indagine sperimentale sullabbattimento meccanico delle rocce mediante martelli demolitori di medio peso. Bollettino dell Associazione Mineraria Subalpina: 88–102

  31. Meissl G (1998) Modellierung der Reichweite von Felsstüurzen: Fallbeispiele zur GIS-gestützten Gefahrenbeurteilung, Dissertation, Institut fur Geographie Univ. Innsbruck

  32. Moya J, Corominas J, Mavrouli O (2013) A geomorphologic and probabilistic approach to the number and size of blocks of fragmental rockfalls, 8th IAG International Conference on Geomorphology, Paris. Abstracts volume: 660

  33. Paluszny A, Tang XH, Nejati M, Zimmerman RW (2016) A direct fragmentation method with Weibull function distribution of sizes based on finite and discrete element simulations. Int J Solids Struct, 80: 38–51. ISSN 0020-7683, doi: 10.1016/j.ijsolstr.2015.10.019.

  34. Ritchie AM (1963) Evaluation of rockfall and its control. Highway research board record, 17. Washington

  35. RockPro3D© (Geociel): commercial rockfall analysis software. http://www.rocpro3d.com/rocpro3d_fr.php

  36. Ruiz-Carulla R, Corominas J, Mavrouli O (2015a) A methodology to obtain the block size distribution of fragmental rockfall deposits. Landslides 12(4):815–825

    Article  Google Scholar 

  37. Ruiz-Carulla R, Corominas J, Mavrouli O (2015b) An empirical approach to rockfall fragmentation. In: Schubert (ed) EUROCK 2015 & 64th Geomechanics Colloquium. p 151–156

  38. Ruiz-Carulla R, Corominas J, Mavrouli O (2016a) A fractal fragmentation model for rockfalls. Landslides. doi:10.1007/s10346-016-0773-8

    Google Scholar 

  39. Ruiz-Carulla R, Corominas J, Mavrouli O (2016b) Comparison of block size distribution in rockfalls. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds) Landslides and engineered slopes, 3. p 1767–1774

  40. Salciarini D, Tamagnini C, Conversini P (2009) Numerical approaches for rockfall analysis: a comparison. Proceedings of 18th IMACS world congress/MODSIM09, Cairns. p 2706–2712

  41. Van Dijke J, van Westen C (1990) Rockfall hazard: a geomorphological application of neighbourhood analysis with ILWIS. ITC Journal 1:40–44

    Google Scholar 

  42. Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3):112–131

    Article  Google Scholar 

  43. Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren LKA, Gerber W, Jaboyedoff M (2011) Rockfall characterisation and structural protection—a review. Natural Hazards and Earth System Science 11:2617–2651

    Article  Google Scholar 

  44. Wang Y, Tonon F (2011) Discrete element modeling of rock fragmentation upon impact in rock fall analysis. Rock Mech Rock Eng 44:23–35

    Article  Google Scholar 

  45. Zhang ZX, Kou SQ, Jiang LG, Lindqvist PA (2000) Effects of loading rate on rock fracture: fracture characteristics and energy partitioning. Int J Rock Mech Min Sci 37:745–762

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by Spanish Government (Ministerio de Economia y Competitividad) through the RockRisk research project (BIA2013-42582-P) and the grant to the first author (BES-2014-069795).

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Matas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matas, G., Lantada, N., Corominas, J. et al. RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls. Landslides 14, 1565–1578 (2017). https://doi.org/10.1007/s10346-017-0818-7

Download citation

Keywords

  • Rockfall
  • Fragmentation
  • GIS
  • Rockfall simulation