Skip to main content

Large volcanic landslide and debris avalanche deposit at Meru, Tanzania

Abstract

Meru volcano is located within the Northern Tanzanian Divergence Zone where the east branch of the East African Rift splits into several branches. The 4565-m-high Meru volcano is breached on the east flank by a horseshoe-shaped scar following a major collapse associated with the Momella debris avalanche approximately 9000 years ago. Remote sensing combined with detailed field mapping allowed the characterisation of the Momella debris avalanche deposit, structure, and texture. Hummocks, ridges, lineaments, lobes, grabens and shear zones are observed on the surface of the deposit. The most common facies observed are the mixed facies with indurated and shattered outcrops and the matrix facies. The collapse involved a volume of 20 ± 2 km3 with a deposit that spread over an area of 1250 km2, up to the base of Kilimanjaro. Based on field evidence, we suggest that water played a key role in the deformation, facies formation, avalanche emplacement and mobility of the entire deposit but to a lesser extent south of Ngurodoto complex. The deformation and emplacement of the avalanche were accommodated by both extension and shearing on a water-fluidised basal layer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • Andrade D, van Wyk de Vries B (2010) Structural analysis of the early stages of catastrophic stratovolcano flank-collapse using analogue models. Bull Volcanol 72:771–789. doi:10.1007/s00445-010-0363-x

    Article  Google Scholar 

  • Bernard B, van Wyk de Vries B, Barba D, Leyrit H, Robin C, Alcaraz S, Samaniego P (2008) The Chimborazo sector collapse and debris avalanche: deposit characteristics as evidence of emplacement mechanisms. J Volcanol Geotherm Res 176:36–43

    Article  Google Scholar 

  • Calais E, d’Oreye N, Albaric J, Deschamps A, Delvaux D, Déverchère J, Ebinger C, Ferdinand RW, Kervyn F, Macheyeki AS, Oyen A, Perrot J, Saria E, Smets B, Stamps DS, Wauthier C (2008) Strain accommodation by slow slip and dyking in a youthful continental rift, East Africa. Nature 456:783–787. doi:10.1038/nature07478

    Article  Google Scholar 

  • Cattermole P (1982) Meru—a Rift Valley giant: Volcano News, 11:i"3

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271

    Article  Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks: London. George Allen & Unwin, Ltd., England, p. 450

    Book  Google Scholar 

  • Davies TR, McSaveney MJ (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109:67–79

    Article  Google Scholar 

  • Delcamp A, Delvaux D, Kwelwa S, Macheyeki A, Kervyn M (2016) Sector collapse events at volcanoes in the north Tanzanian divergence zone and their implications for regional tectonics. GSA 128:169–186. doi:10.1130/B31119.1

    Google Scholar 

  • Delcamp A, Roberti G, van Wyk de Vries B (submitted) (in revision to Bulletin of Volcanology) Water storage and water release in volcanoes during gravitational deformation and landslides.

  • Dufresne A, Salinas S, Siebe C (2010) Substrate deformation associated with the Jocotitlán edifice collapse and debris avalanche deposit, Central México. J Volcanol Geotherm Res 197:133–148. doi:10.1016/j.jvolgeores.2010.02.019

    Article  Google Scholar 

  • Glicken H (1986) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. Ph.D., University California, Santa Barbara, 303 p.

  • Hecky, RE (1971) The palaeolimnology of the alkaline, saline lakes on the Mt Meru lahars. PhD thesis, Duke University.

  • Heim A (1932) Bergsturz und Menschenleben. Zurich: Fretz & Wasmuth Verlag.

  • Hsu KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. GSA 86(1):129–140

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-Filled SRTM for the Globe, Version 4: Consortium for Spatial Information Shuttle Radar Topographic Mission 90 m Database: http://srtm.csi.cgiar.org (accessed 2015).

  • Kelfoun K, Druitt TH (2005) Numerical modelling of the Socompa rock avalanche, Chile. J Geoph Res 110:B12202. doi:10.1029/2005JB003758

    Article  Google Scholar 

  • Keller J, Klaudius J, Kervyn M, Ernst GGJ, Mattsson HB (2010) Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania. I. New magma composition. Bull Volcanol 72:893–912. doi:10.1007/s00445–010–0371-x

    Article  Google Scholar 

  • Kervyn M, Ernst GGJ, Vaughan RG, Keller J, Klaudius J, Pradal E, Belton F, Mattsson HB, Mbede E, Jacobs P (2010) Fundamental changes in the activity of the natrocarbonatite volcano OldoinyoLengai, Tanzania. Bull Volcanol 72:913–931. doi:10.1007/s00445-010-0360-0

    Article  Google Scholar 

  • Le Bas MJ, Streickeisen AL (1991) The IUGS systematics of igneous rocks. J Geol Soc London 148.

  • Le Gall B, Gernigon L, Rolet J, Ebinger C, Gloaguen R, Nilsen O, Dypvik H, Deffontaines B, Mruma A (2004) Neogene–Holocene rift propagationin Central Tanzania: Morphostructural and aeromagnetic evidence from the Kilombero area. GSA 116:490–510. doi:10.1130/B25202.1

    Article  Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331

    Article  Google Scholar 

  • Li T (1983) A mathematical model for predicting the extent of a major rockfall. Zeitschrift fur Geomorphologie 27(4):473–482

    Google Scholar 

  • Macheyeki AS, Delvaux D, De Batist M, Mruma A (2008) Fault kinematics and tectonic stress in the seismically active Manyara–Dodoma rift segment in Central Tanzania—implications for the east African rift. J Afr Earth Sci 51:163–188. doi:10.1016/j.jafrearsci.2008.01.00

    Article  Google Scholar 

  • Manzella I, Labiouse V (2008) Qualitative analysis of rock avalanches propagation by means of physical modelling of not constrained gravel flows. Rock Mech Rock Eng 41:133–151

    Article  Google Scholar 

  • Naranjo JA, Francis P (1987) High velocity debris avalanche at Lastarria volcano in the north Chilean Andes. Bull Volcanol 49:509–514

    Article  Google Scholar 

  • Nyblade AA, Birt C, Langston CA, Owens TJ, Last RJ (1996) Seismic experiment reveals rifting of craton in Tanzania. Eos Transactions AGU 77:517–521. doi:10.1029/96EO00339

    Article  Google Scholar 

  • Paguican EMB, van Wyk de Vries B, Lagmay A (2014) Hummocks: how they form and how they evolve in rockslide-debris avalanches. Landslides 11:67–80. doi:10.1007/s10346-012-0368-y

    Article  Google Scholar 

  • Palmer BA, Neall VE (1989) The Murimotu formation 9500 year old deposits of a debris avalanche and associated lahars, mount Ruapehu, North Island, New Zealand. New Zealand J Geol Geoph 32:477–486

    Article  Google Scholar 

  • Roberts, MA (2002) The geochemical and volcanological evolution of the Mt. Meru region, Northern Tanzania. PhD thesis, University of Cambridge.

  • Roverato M, Capra L, Sulpizio R, Norini G (2011) Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): insights into pre-failure conditions and climate influence. J Volcanol Geotherm Res 207:33–46. doi:10.1016/j.jvolgeores.2011.07.003

    Article  Google Scholar 

  • Roverato M, Cronin SJ, Procter JN, Capra L (2014) Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. GSA 127(1–2):3. doi:10.1130/B30946.1

    Google Scholar 

  • Scheidgger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5(4):231–236

    Article  Google Scholar 

  • Shea T, van Wyk de Vries B (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4:657–686

    Article  Google Scholar 

  • Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197

    Article  Google Scholar 

  • Tost M, Cronin SJ, Procter JN (2014) Transport and emplacement mechanisms of channelised long-runout debris avalanches, Ruapehu volcano, New Zealand. Bull Volcanol 76:881

    Article  Google Scholar 

  • Ui T (1983) Volcanic dry avalanche deposits—identification and comparison with nonvolcanic debris stream deposits. J Volcanol Geotherm Res 18(1):135–150

    Article  Google Scholar 

  • Ui T, Takarada S, Yoshimoto M (2000) Debris avalanches. In Encylopedia of volcanoes, first edn. Academic Press, pp. 617–626

  • van Wyk de Vries B, Davies T (2015) Landslides, debris avalanches and volcanic gravitational deformation. In Encylopedia of volcanoes, second edn. Academic Press, pp. 665–682

  • van Wyk de Vries B, Márquez A, Herrera R, Granja Bruña JL, Llanes P, Delcamp A (2014) Craters of elevation revisited: forced-folds, bulging and uplift of volcanoes. Bull Volcanol 76:875. doi:10.1007/s00445-014-0875-x

    Article  Google Scholar 

  • van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247

    Article  Google Scholar 

  • van Wyk de Vries B, Delcamp A (2015) Volcanic debris avalanches: in landslides hazards. Elsevier, Risks and Disasters, pp. 131–157. doi:10.1016/B978-0-12-396452-6.00005-7

    Google Scholar 

  • Vaughan RG, Kervyn M, Realmuto V, Abrams M, Hook SJ (2008) Satellite measurements of recent volcanic activity at Oldoinyo Lengai, Tanzania. J Volcanol Geotherm Res 173:196–206. doi:10.1016/j.jvolgeores.2008.01.028

    Article  Google Scholar 

  • Voight B, Sousa J (1994) Lessons from Ontake-san: a comparative analysis of debris avalanche dynamics. Eng Geol 38:261–297

    Article  Google Scholar 

  • Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 may 1980. Geotechnique 33:243–273

    Article  Google Scholar 

  • Wadge G, Francis PW, Ramirez CF (1995) The Socompa collapse and avalanche event. J Volcanol Geotherm Res 66:309–336

    Article  Google Scholar 

  • Wilkinson P, Downie C, Cattermole PJ (1983) Quarter degree sheet 55, Arusha, 1:125000: Geological Survey of Tanzania

  • Wilkinson P, Mitchell JG, Cattermole PJ, Downie C (1986) Volcanic chronology of the Meru-Kilimanjaro region, northern Tanzania. J Geol Soc Lond 143:601–605

    Article  Google Scholar 

Download references

Acknowledgments

The project has been supported by a post doc fellowship to AD funded by the Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen). We thank P. Lahitte, K. Fontijn, C. Shemsanga and M. A. Del Marmol for discussion. E. De Pelsmaeke is thanked for access to microscope. The aerial pictures have been purchased at the Division Mapping in Dar Es Salaam. Authorisations to work in Tanzania and Meru National Park have been provided by COSTECH, TAWIRI and TANAPA. AD is greatly thankful to Mr. and Ms. Patel for unlimited and welcome access to Arusha Aggregates quarry, to the rangers of Meru National Park, especially Magoiga and our cooks and porters, specifically Mikael, and of course, Moses and Alois for all their precious help and friendship. The manuscript has benefited from constructive comments from Marc Andre Brideau (Editor), J. Procter and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Delcamp.

Electronic supplementary material

ESM 1

(DOC 43498 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delcamp, A., Kervyn, M., Benbakkar, M. et al. Large volcanic landslide and debris avalanche deposit at Meru, Tanzania. Landslides 14, 833–847 (2017). https://doi.org/10.1007/s10346-016-0757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0757-8

Keywords

  • Meru
  • Tanzania
  • Volcanic landslide
  • Debris avalanche deposit
  • Water