Skip to main content

Use of targets to track 3D displacements in highly vegetated areas affected by landslides

Abstract

Monitoring landslides with terrestrial laser scanning (TLS) is currently a well-known technique. One problem often encountered is the vegetation that produces shadow areas on the scans. Indeed, the points behind a given obstacle are hidden and thus occluded on the point cloud. Thereby, locations monitored with terrestrial laser scanner are mostly rock instabilities and few vegetated landslides, being difficult or even impossible to survey vegetated slopes using this method with its classical non-full wave form. The Peney landslide (Geneva, Switzerland) is partially vegetated by bushes and trees, and in order to monitor its displacements during the drawdown of the Verbois reservoir located at its base, an alternative solution has been found. We combined LiDAR technique with 14 targets made of polystyrene placed at different locations inside and outside the landslide area. The obtained displacements were compared with classical measurement methods (total station and extensometer), showing good resemblance of results, indicating that the use of targets in highly vegetated areas could be an efficient alternative for mass movements monitoring.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Abellán A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119:162–171. doi:10.1016/j.geomorph.2010.03.016

    Article  Google Scholar 

  • Aryal A, Brooks BA, Reid ME (2015) Landslide subsurface slip geometry inferred from 3‐D surface displacement fields. Geophys Res Lett 42(5):1411–1417. doi:10.1002/2014GL062688

    Article  Google Scholar 

  • Barbarella M, Fiani M (2013) Monitoring of large landslides by terrestrial laser scanning techniques: field data collection and processing. European Journal of Remote Sensing 46:126–151. doi:10.5721/EuJRS20134608

    Article  Google Scholar 

  • Bauer A, Paar G, Kaltenböck A (2005) Mass movement monitoring using terrestrial laser scanner for rock fall management. In: Proceedings of the First International Symposium on Geo-Information for Disaster Management, Delft, The Netherlands. Springer, Berlin, pp 393–406. doi:10.1007/3-540-27468-5_28

    Chapter  Google Scholar 

  • Carrea D, Abellán A, Derron M-H, Gauvin N, Jaboyedoff M (2012) Using 3D surface datasets to understand landslide evolution: From analogue models to real case study. In: Eberhardt E, Froese C, Turner K, Leroueil S (Eds.) Landslides and Engineered Slopes: Protecting Society through Improved Understanding. CRC Press- Taylor and Francis: Canada, pp 575–579

  • Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image & Vision Computing 10:145–155. doi:10.1016/0262-8856(92)90066-C

    Article  Google Scholar 

  • Giussani A, Scaioni M (2004) Application of TLS to support landslides study: survey planning, operational issues and data processing, vol 36(8/W2). IAPRSSIS, Freiburg, pp 318–323

    Google Scholar 

  • Jaboyedoff M, Metzger R, Oppikofer T, Couture R, Derron MH, Locat J, Turmel D (2007) New insight techniques to analyze rock-slope relief using Dem and 3D-imaging cloud points: COLTOP-3D software. In: Eberhardt E, Stead D, Morrison T (eds) Rock mechanics v.1: meetings society’s challenges and demands, chap 7. Taylor & Francis, London, pp 61–68. doi:10.1201/NOE0415444019-c8

    Chapter  Google Scholar 

  • Jaboyedoff M, Derron MH, Jakubowski J, Oppikofer T, Pedrazzini A (2012) The 2006 Eiger rockslide, European Alps. In: Stead D, Clague J (Eds.) Landslides Types, Mechanisms and Modeling. Cambridge University Press, Cambridge, UK, pp 282–296. doi:10.1017/CBO9780511740367.024

  • Kemeny J, Turner K (2008) Ground-based LiDAR: rock slope mapping and assessment. Federal Highway Administration report, FHWA-CFL/TD-08-006., Available at http://www.iaeg.info/portals/0/Content/Commissions/Comm19/GROUND-BASED LiDAR Rock Slope Mapping and Assessment.pdf

    Google Scholar 

  • Kersten T, Mechelke K, Lindstaedt M, Sternberg H (2009) Methods for geometric accuracy investigations of terrestrial laser scanning systems. Photogrammetrie Fernerkundung Geoinformation 4:301–315. doi:10.1127/1432-8364/2009/0023

    Article  Google Scholar 

  • Lato M, Hutchinson J, Diederichs M, Ball D, Harrap R (2009) Engineering monitoring of rockfall hazards along transportation corridors: using mobile terrestrial LiDAR. Nat Hazards Earth Syst Sci 9:935–946. doi:10.5194/nhess-9-935-2009

    Article  Google Scholar 

  • Lim M, Petley DN, Rosser NJ, Allison RJ, Long AJ, Pybus D (2005) Combined digital photogrammetry and time-offlight laser scanning for monitoring cliff evolution. Photogrammetric Record 20(1):109–129. doi:10.1111/j.1477-9730.2005.00315.x

    Article  Google Scholar 

  • Monserrat O, Crosetto M (2008) Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J. Photogramm Remote Sens 63:142–154. doi:10.1016/j.isprsjprs.2007.07.008

    Article  Google Scholar 

  • Nissen E, Krishnan AK, Arrowsmith JR, Saripalli S (2012) Three-dimensional surface displacements and rotations from differencing pre- and post-earthquake LiDAR point clouds. Geophys Res Lett 39:1–6. doi:10.1029/2012GL052460

    Article  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Keusen HR (2008) Collapse of the eastern Eiger flank in the Swiss Alps. Nat Geosci 1:531–535. doi:10.1038/ngeo258

    Article  Google Scholar 

  • Optech ILRIS-3DER Laser Scanner Description. Available online: http://www.optech.com/wp-content/uploads/specification_ilris.pdf (accessed on 20 June 2014)

  • Rosser NJ, Petley DN (2008) Monitoring and modelling of slope movement on rock cliffs prior to failure. Landslides and Engineered Slopes. In: From the Past to the Future: Proc. 10th Int. Symp. on Landslides and Engineered Slopes, 30 June - 4 July 2008, vol 2. CRC Press, Xi’an, pp 1265–1271. doi:10.1201/9780203885284-c168

    Chapter  Google Scholar 

  • Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Quarterly Journal Engineering Geology Hydrogeology 38(4):363–375. doi:10.1144/1470-9236/05-008

    Article  Google Scholar 

  • Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. In: Third International Conference on 3-D Digital Imaging and Modeling (3DIM ‘01), Quebec City, Canada., pp 145–152. doi:10.1109/IM.2001.924423

    Chapter  Google Scholar 

  • Salvi J, Matabosch C, Fofi D, Forest J (2007) A review of recent range image registration methods with accuracy evaluation. Image Vision Computing 25(5):578–596. doi:10.1016/j.imavis.2006.05.012

    Article  Google Scholar 

  • Slob S, Hack R (2004) 3D terrestrial laser scanning as a new field measurement and monitoring technique. In: Hack R, Azzam R, Charlier R (eds) Engineering geology for infrastructure planning in Europe: a European perspective, vol 104. Springer, Berlin, pp 179–189. doi:10.1007/978-3-540-39918-6_22, Lecture notes in Earth Sciences

    Chapter  Google Scholar 

  • Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology 106:163–182. doi:10.1016/j.enggeo.2009.03.004

    Article  Google Scholar 

  • Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Rem Sens 28(16):3425–3446. doi:10.1080/01431160601024234

    Article  Google Scholar 

  • Tullen P (2002) Méthodes d’analyse du fonctionnement hydrogéologique des versants instables, PhD Thesis EPFL, Lausanne., p 135. doi:10.5075/epfl-thesis-2622

    Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, Van Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Proc Land 32(5):754–769. doi:10.1002/esp.1417

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Swiss National Research Foundation under project FNS-1440404 untitled “Characterizing and analysing 3D temporal slope evolution” and by the Services Industriel de Genève (SIG) under the project entitled “Suivi du Glissement de Peney lors de la vidange 2012 de la retenue de Verbois - Monitoring expérimental à l’aide d’un scanner laser terrestre”. The authors are thankful to Dr. Pierre Tullen from CSD INGENIEURS SA who provided us the extensometers data and HEIMBERG & CIE SA for providing us the total station data. The two anonymous reviewers are acknowledged for their valuable comments that helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Franz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franz, M., Carrea, D., Abellán, A. et al. Use of targets to track 3D displacements in highly vegetated areas affected by landslides. Landslides 13, 821–831 (2016). https://doi.org/10.1007/s10346-016-0685-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0685-7

Keywords

  • Landslide
  • Monitoring
  • Target tracking
  • Vegetated areas
  • Drawdown
  • 3D point clouds
  • LiDAR