, Volume 13, Issue 4, pp 821–831 | Cite as

Use of targets to track 3D displacements in highly vegetated areas affected by landslides

  • Martin FranzEmail author
  • Dario Carrea
  • Antonio Abellán
  • Marc-Henri Derron
  • Michel Jaboyedoff
Technical Note


Monitoring landslides with terrestrial laser scanning (TLS) is currently a well-known technique. One problem often encountered is the vegetation that produces shadow areas on the scans. Indeed, the points behind a given obstacle are hidden and thus occluded on the point cloud. Thereby, locations monitored with terrestrial laser scanner are mostly rock instabilities and few vegetated landslides, being difficult or even impossible to survey vegetated slopes using this method with its classical non-full wave form. The Peney landslide (Geneva, Switzerland) is partially vegetated by bushes and trees, and in order to monitor its displacements during the drawdown of the Verbois reservoir located at its base, an alternative solution has been found. We combined LiDAR technique with 14 targets made of polystyrene placed at different locations inside and outside the landslide area. The obtained displacements were compared with classical measurement methods (total station and extensometer), showing good resemblance of results, indicating that the use of targets in highly vegetated areas could be an efficient alternative for mass movements monitoring.


Landslide Monitoring Target tracking Vegetated areas Drawdown 3D point clouds LiDAR 



This research was supported by the Swiss National Research Foundation under project FNS-1440404 untitled “Characterizing and analysing 3D temporal slope evolution” and by the Services Industriel de Genève (SIG) under the project entitled “Suivi du Glissement de Peney lors de la vidange 2012 de la retenue de Verbois - Monitoring expérimental à l’aide d’un scanner laser terrestre”. The authors are thankful to Dr. Pierre Tullen from CSD INGENIEURS SA who provided us the extensometers data and HEIMBERG & CIE SA for providing us the total station data. The two anonymous reviewers are acknowledged for their valuable comments that helped us to improve the manuscript.


  1. Abellán A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119:162–171. doi: 10.1016/j.geomorph.2010.03.016 CrossRefGoogle Scholar
  2. Aryal A, Brooks BA, Reid ME (2015) Landslide subsurface slip geometry inferred from 3‐D surface displacement fields. Geophys Res Lett 42(5):1411–1417. doi: 10.1002/2014GL062688 CrossRefGoogle Scholar
  3. Barbarella M, Fiani M (2013) Monitoring of large landslides by terrestrial laser scanning techniques: field data collection and processing. European Journal of Remote Sensing 46:126–151. doi: 10.5721/EuJRS20134608 CrossRefGoogle Scholar
  4. Bauer A, Paar G, Kaltenböck A (2005) Mass movement monitoring using terrestrial laser scanner for rock fall management. In: Proceedings of the First International Symposium on Geo-Information for Disaster Management, Delft, The Netherlands. Springer, Berlin, pp 393–406. doi: 10.1007/3-540-27468-5_28 CrossRefGoogle Scholar
  5. Carrea D, Abellán A, Derron M-H, Gauvin N, Jaboyedoff M (2012) Using 3D surface datasets to understand landslide evolution: From analogue models to real case study. In: Eberhardt E, Froese C, Turner K, Leroueil S (Eds.) Landslides and Engineered Slopes: Protecting Society through Improved Understanding. CRC Press- Taylor and Francis: Canada, pp 575–579Google Scholar
  6. Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image & Vision Computing 10:145–155. doi: 10.1016/0262-8856(92)90066-C CrossRefGoogle Scholar
  7. Giussani A, Scaioni M (2004) Application of TLS to support landslides study: survey planning, operational issues and data processing, vol 36(8/W2). IAPRSSIS, Freiburg, pp 318–323Google Scholar
  8. Jaboyedoff M, Metzger R, Oppikofer T, Couture R, Derron MH, Locat J, Turmel D (2007) New insight techniques to analyze rock-slope relief using Dem and 3D-imaging cloud points: COLTOP-3D software. In: Eberhardt E, Stead D, Morrison T (eds) Rock mechanics v.1: meetings society’s challenges and demands, chap 7. Taylor & Francis, London, pp 61–68. doi: 10.1201/NOE0415444019-c8 CrossRefGoogle Scholar
  9. Jaboyedoff M, Derron MH, Jakubowski J, Oppikofer T, Pedrazzini A (2012) The 2006 Eiger rockslide, European Alps. In: Stead D, Clague J (Eds.) Landslides Types, Mechanisms and Modeling. Cambridge University Press, Cambridge, UK, pp 282–296. doi: 10.1017/CBO9780511740367.024
  10. Kemeny J, Turner K (2008) Ground-based LiDAR: rock slope mapping and assessment. Federal Highway Administration report, FHWA-CFL/TD-08-006., Available at LiDAR Rock Slope Mapping and Assessment.pdfGoogle Scholar
  11. Kersten T, Mechelke K, Lindstaedt M, Sternberg H (2009) Methods for geometric accuracy investigations of terrestrial laser scanning systems. Photogrammetrie Fernerkundung Geoinformation 4:301–315. doi: 10.1127/1432-8364/2009/0023 CrossRefGoogle Scholar
  12. Lato M, Hutchinson J, Diederichs M, Ball D, Harrap R (2009) Engineering monitoring of rockfall hazards along transportation corridors: using mobile terrestrial LiDAR. Nat Hazards Earth Syst Sci 9:935–946. doi: 10.5194/nhess-9-935-2009 CrossRefGoogle Scholar
  13. Lim M, Petley DN, Rosser NJ, Allison RJ, Long AJ, Pybus D (2005) Combined digital photogrammetry and time-offlight laser scanning for monitoring cliff evolution. Photogrammetric Record 20(1):109–129. doi: 10.1111/j.1477-9730.2005.00315.x CrossRefGoogle Scholar
  14. Monserrat O, Crosetto M (2008) Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J. Photogramm Remote Sens 63:142–154. doi: 10.1016/j.isprsjprs.2007.07.008 CrossRefGoogle Scholar
  15. Nissen E, Krishnan AK, Arrowsmith JR, Saripalli S (2012) Three-dimensional surface displacements and rotations from differencing pre- and post-earthquake LiDAR point clouds. Geophys Res Lett 39:1–6. doi: 10.1029/2012GL052460 CrossRefGoogle Scholar
  16. Oppikofer T, Jaboyedoff M, Keusen HR (2008) Collapse of the eastern Eiger flank in the Swiss Alps. Nat Geosci 1:531–535. doi: 10.1038/ngeo258 CrossRefGoogle Scholar
  17. Optech ILRIS-3DER Laser Scanner Description. Available online: (accessed on 20 June 2014)
  18. Rosser NJ, Petley DN (2008) Monitoring and modelling of slope movement on rock cliffs prior to failure. Landslides and Engineered Slopes. In: From the Past to the Future: Proc. 10th Int. Symp. on Landslides and Engineered Slopes, 30 June - 4 July 2008, vol 2. CRC Press, Xi’an, pp 1265–1271. doi: 10.1201/9780203885284-c168 CrossRefGoogle Scholar
  19. Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Quarterly Journal Engineering Geology Hydrogeology 38(4):363–375. doi: 10.1144/1470-9236/05-008 CrossRefGoogle Scholar
  20. Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. In: Third International Conference on 3-D Digital Imaging and Modeling (3DIM ‘01), Quebec City, Canada., pp 145–152. doi: 10.1109/IM.2001.924423 CrossRefGoogle Scholar
  21. Salvi J, Matabosch C, Fofi D, Forest J (2007) A review of recent range image registration methods with accuracy evaluation. Image Vision Computing 25(5):578–596. doi: 10.1016/j.imavis.2006.05.012 CrossRefGoogle Scholar
  22. Slob S, Hack R (2004) 3D terrestrial laser scanning as a new field measurement and monitoring technique. In: Hack R, Azzam R, Charlier R (eds) Engineering geology for infrastructure planning in Europe: a European perspective, vol 104. Springer, Berlin, pp 179–189. doi: 10.1007/978-3-540-39918-6_22, Lecture notes in Earth SciencesCrossRefGoogle Scholar
  23. Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology 106:163–182. doi: 10.1016/j.enggeo.2009.03.004 CrossRefGoogle Scholar
  24. Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Rem Sens 28(16):3425–3446. doi: 10.1080/01431160601024234 CrossRefGoogle Scholar
  25. Tullen P (2002) Méthodes d’analyse du fonctionnement hydrogéologique des versants instables, PhD Thesis EPFL, Lausanne., p 135. doi: 10.5075/epfl-thesis-2622 Google Scholar
  26. Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, Van Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Proc Land 32(5):754–769. doi: 10.1002/esp.1417 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Martin Franz
    • 1
    Email author
  • Dario Carrea
    • 1
  • Antonio Abellán
    • 1
  • Marc-Henri Derron
    • 1
  • Michel Jaboyedoff
    • 1
  1. 1.Risk Analysis Group, Institute of Earth Sciences (ISTE), Faculty of Geosciences and EnvironmentUniversity of Lausanne1015 LausanneSwitzerland

Personalised recommendations