Advertisement

Landslides

, Volume 13, Issue 6, pp 1369–1377 | Cite as

The hydrodynamics of landslide tsunamis: current analytical models and future research directions

  • Emiliano Renzi
  • Paolo Sammarco
Review Article

Abstract

Landslide-generated tsunamis are lesser-known yet equally destructive than earthquake tsunamis. Indeed, the highest tsunami wave recorded in recent history was generated by a landslide in Lituya Bay (Alaska, July 9, 1958) and produced run-up in excess of 400 m. In this paper, we review the state of the art of landslide tsunami analytical modelling. Within the framework of a linearised shallow-water theory, we illustrate the dynamics of landslide tsunami generation and propagation along beaches and around islands. Finally, we highlight some intriguing new directions in the analytical modelling of landslide tsunamis to support early warning systems.

Keywords

Landslide tsunamis Analytical modelling Fluid dynamics 

References

  1. Bardet JP, Synolakis CE, Davies HL, Imamura F, Okal EA (2003) Landslide tsunamis: Recent findings and research directions. Pageoph Top Vol 1793–1809Google Scholar
  2. Cecioni C, Romano A, Bellotti G, Di Risio M, De Girolamo P (2011) Real-time inversion of tsunamis generated by landslides. Nat Hazards Earth Syst Sci 11:2511–2520CrossRefGoogle Scholar
  3. Cecioni C, Abdolali A, Bellotti G, Sammarco P (2015) Large-scale numerical modeling of hydro-acoustic waves generated by tsunamigenic earthquakes. Nat Hazards Earth Syst Sci 15:627–636CrossRefGoogle Scholar
  4. Couston LA, Mei CC, Alam MR (2015) Landslide tsunamis in lakes. J Fluid Mech 772:784–804CrossRefGoogle Scholar
  5. De Girolamo P, De Bernardinis B, Beltrami GM, Di Risio M, Bellotti G, Capone T (2011) The Italian activities on tsunami risk mitigation: the operating landslide tsunami early warning system of Stromboli (Aeolian Islands, Italy). Proceedings of the 7th International Workshop on Coastal Disaster Prevention, TokyoGoogle Scholar
  6. De Girolamo P, Di Risio M, Romano A, Molfetta M (2014) Landslide tsunami: physical modeling for the implementation of tsunami early warning systems in the Mediterranean Sea. Procedia Eng 70:429–438CrossRefGoogle Scholar
  7. Di Risio M, Sammarco P (2008) Analytical modeling of landslide generated waves. J Waterway Port Coastal Ocean Eng 134:53–60CrossRefGoogle Scholar
  8. Di Risio M, Bellotti G, Panizzo A, De Girolamo P (2009a) Three dimensional experiments on landslide generated waves at a sloping coast. Coast Eng 56(5–6):659–671CrossRefGoogle Scholar
  9. Di Risio M, De Girolamo P, Bellotti G, Panizzo A, Aristodemo F, Molfetta M, Petrillo A (2009b) Landslide-generated tsunamis runup at the coast of a conical island: new physical model experiments. J Geophys Res 114(C01009)Google Scholar
  10. Dias F, Dutykh D, O’Brien L, Renzi E, Stefanakis T (2014) On the modelling of tsunami generation and tsunami inundation. Procedia IUTAM 10:338–355CrossRefGoogle Scholar
  11. Farrell EJ, Ellis JT, Hickey KR (2015) Tsunami case studies. In: Ellis JT, Sherman DJ (eds) Coastal and marine hazards, risks, and disasters. Elsevier, Amsterdam, pp 93–128CrossRefGoogle Scholar
  12. Hendin G, Stiassnie M (2013) Tsunami and acoustic-gravity waves in water of constant depth. Phys Fluids 25(086103):1–20Google Scholar
  13. Kanoglu U, Synolakis C (2015) Tsunami dynamics, forecasting, and mitigation. In: Ellis JT, Sherman DJ (eds) Coastal and marine hazards, risks, and disasters. Elsevier, Amsterdam, pp 15–57CrossRefGoogle Scholar
  14. Liu PLF, Lynett P, Synolakis CE (2003) Analytical solutions for forced long waves on a sloping beach. J Fluid Mech 478:101–109CrossRefGoogle Scholar
  15. Liu PLF, Wu TR, Raichlen F, Synolakis CE, Borrero JC (2005) Runup and rundown generated by three-dimensional sliding masses. J Fluid Mech 536:107–144CrossRefGoogle Scholar
  16. Lynett P, Liu PLF (2005) A numerical study of the run-up generated by three-dimensional landslides. J Geophys Res 110(C03006):1–16Google Scholar
  17. Ma G, Shi F, Kirby JT (2012) Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model 43–44:22–35CrossRefGoogle Scholar
  18. Ma G, Kirby JT, Shi F (2013) Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Model 69:146–165CrossRefGoogle Scholar
  19. Mei CC (1997) Mathematical analysis in engineering. Cambridge University Press, CambridgeGoogle Scholar
  20. Mei CC, Stiassnie M, Yue DKP (2005) Theory and application of ocean surface waves. World Scientific, SingaporeGoogle Scholar
  21. Mohammed F, Fritz H (2012) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J Geophys Res 11(C11)Google Scholar
  22. Panizzo A, De Girolamo P, Di Risio M, Maistri A, Petaccia A (2005) Great landslide events in Italian artificial reservoirs. Nat Hazards Earth Syst Sci 5:733–740CrossRefGoogle Scholar
  23. Renzi E (2010) Landslide tsunamis. PhD thesis, University of Rome Tor VergataGoogle Scholar
  24. Renzi E, Sammarco P (2010) Landslide tsunamis propagating around a conical island. J Fluid Mech 605:251–285CrossRefGoogle Scholar
  25. Renzi E, Sammarco P (2012) The influence of landslide shape and continental shelf on landslide generated tsunamis along a plane beach. Nat Hazards Earth Syst Sci 12:1503–1520CrossRefGoogle Scholar
  26. Renzi E, Cecioni C, Bellotti G, Sammarco P, Dias F (2015) Extended mild-slope equations for compressible fluids. Proceedings of the 30th IWWWFB, BristolGoogle Scholar
  27. Romano A, Di Risio M, Bellotti G (2013) Wavenumber-frequency analysis of the landslide-generated tsunamis at a conical island. Coast Eng 81:32–43CrossRefGoogle Scholar
  28. Sammarco P, Renzi E (2008) Landslide tsunamis propagating along a plane beach. J Fluid Mech 598:107–119CrossRefGoogle Scholar
  29. Sammarco P, Cecioni C, Bellotti G, Abdolali A (2013) Depth integrated equation for large-scale modelling of low-frequency hydroacoustic waves. J Fluid Mech 722(R6):1–10Google Scholar
  30. Sarri A, Guillas S, Dias F (2012) Statistical emulation of a tsunami model for sensitivity analysis and uncertainty quantification. Nat Hazards Earth Syst Sci 12:2003–2018CrossRefGoogle Scholar
  31. Stefanakis T, Contal E, Vayatis F, Dias F, Synolakis CE (2014) Can small islands protect nearby coasts from tsunamis? An active experimental design approach. Proc R Soc A 470(20140575)Google Scholar
  32. Stefanakis T, Dias F, Synolakis C (2015) Tsunami generation above a sill. Pure Appl Geophys 172(3–4):985–1002CrossRefGoogle Scholar
  33. Synolakis CE, Bardet JP, Borrero JC, Davies HL, Okal EA, Silver E, Sweet S, Tappin DR (2002) The slump origin of the 1998 Papua New Guinea tsunami. Proc R Soc A 458:763–789CrossRefGoogle Scholar
  34. Tappin DR, Watts P, Grilli ST (2008) The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Nat Hazards Earth Syst Sci 8:243–266CrossRefGoogle Scholar
  35. Tehranirad B, Harris JC, Grilli AR, Grilli ST, Abadie S, Kirby JT, Shi F (2015) Far-field tsunami impact in the North Atlantic Basin from large scale flank collapses of the cumbre vieja volcano, la palma. Pure Appl Geophys 1–28Google Scholar
  36. Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni F (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Nat Hazards Earth Syst Sci 5:763–775CrossRefGoogle Scholar
  37. Wang Y, Liu PLF, Mei CC (2011) Solid landslide generated waves. J Fluid Mech 675:529–539CrossRefGoogle Scholar
  38. Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Hazards Earth Syst Sci 3(391–402)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematical SciencesLoughborough UniversityLoughboroughUK
  2. 2.Department of Civil and Computer Science EngineeringUniversity of Rome Tor VergataRomeItaly

Personalised recommendations