, Volume 13, Issue 5, pp 1197–1214 | Cite as

Application of a process-based shallow landslide hazard model over a broad area in Central Italy

  • Eleonora Gioia
  • Gabriella Speranza
  • Maurizio Ferretti
  • Jonathan W. Godt
  • Rex L. Baum
  • Fausto MarincioniEmail author
Original Paper


Process-based models are widely used for rainfall-induced shallow landslide forecasting. Previous studies have successfully applied the U.S. Geological Survey’s Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) model (Baum et al. 2002) to compute infiltration-driven changes in the hillslopes’ factor of safety on small scales (i.e., tens of square kilometers). Soil data input for such models are difficult to obtain across larger regions. This work describes a novel methodology for the application of TRIGRS over broad areas with relatively uniform hydrogeological properties. The study area is a 550-km2 region in Central Italy covered by post-orogenic Quaternary sediments. Due to the lack of field data, we assigned mechanical and hydrological property values through a statistical analysis based on literature review of soils matching the local lithologies. We calibrated the model using rainfall data from 25 historical rainfall events that triggered landslides. We compared the variation of pressure head and factor of safety with the landslide occurrence to identify the best fitting input conditions. Using calibrated inputs and a soil depth model, we ran TRIGRS for the study area. Receiver operating characteristic (ROC) analysis, comparing the model’s output with a shallow landslide inventory, shows that TRIGRS effectively simulated the instability conditions in the post-orogenic complex during historical rainfall scenarios. The implication of this work is that rainfall-induced landslides over large regions may be predicted by a deterministic model, even where data on geotechnical and hydraulic properties as well as temporal changes in topography or subsurface conditions are not available.


Deterministic model Infiltration Pore pressure Shallow landslide Italy 



This work is part of a Ph.D. project in Civil and Environmental Protection at the Università Politecnica delle Marche at Ancona, Italy, supported by the Civil Protection of the Marche Region and the USGS Geologic Hazards Science Center in Denver, Colorado. Authors would like to thank the anonymous reviewers for the encouraging and constructive comments, which helped improve this manuscript.


  1. Antonini G, Cardinali M, Guzzetti F, et al. (1993) Carta Inventario dei Movimenti Franosi della Regione Marche ed aree limitrofe. Pubblicazione CNR GNDCI n. 580, 2 Fogli, Scala 1:100.000, PerugiaGoogle Scholar
  2. Baum RL, Godt JW (2013) Correction to “Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration.”. J Geophys Res Earth Surf 118:1. doi: 10.1002/jgrf.20100 CrossRefGoogle Scholar
  3. Baum R, Savage W, Godt J (2002) TRIGRS—a Fortran program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis. U.S. Geological Survey Open-File Report 02–0424 (
  4. Baum R, Savage W, Godt J (2008) TRIGRS—a Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S. Geological Survey Open-File Report 2008–1159 (
  5. Baum RL, Godt JW, Savage WZ (2010) Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. J Geophys Res 115:1–26. doi: 10.1029/2009JF001321 CrossRefGoogle Scholar
  6. Bisci C, Dramis F (eds) (1991) La geomorfologia delle Marche. In: L’ambiente Fisico delle Marche. SELCA, Firenze, Italy, pp 83–103 (in Italian)Google Scholar
  7. Brady NC (1990) The nature and properties of soils, 10th edn. Macmillan, New YorkGoogle Scholar
  8. Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Ser A Phys Geogr 62:23–27. doi: 10.2307/520449 CrossRefGoogle Scholar
  9. Casagli N, Dapporto S, Ibsen ML et al (2006) Analysis of the landslide triggering mechanism during the storm of 20th–21st November 2000, in Northern Tuscany. Landslides 3:13–21. doi: 10.1007/s10346-005-0007-y CrossRefGoogle Scholar
  10. Cascini L, Gullà G, Sorbino G (2006) Groundwater modelling of a weathered gneissic cover. Can Geotech J 43:1153–1166. doi: 10.1139/T06-066 CrossRefGoogle Scholar
  11. Cascini L, Calvello M, Grimaldi G (2010) Groundwater modeling for the analysis of active slow-moving landslides. J Geotech Geoenvironmental Eng 136:1220–1230. doi:  10.1061/?ASCE?GT.1943-5606.0000323 CE
  12. Cassinis R, Tabacco I, Bruzzi G et al (1985) The contribution of geophysical methods to the study of the great Ancona landslide (December 13, 1982). Geoexploration 23:363–386. doi: 10.1016/0016-7142(85)90003-1 CrossRefGoogle Scholar
  13. Cervi F, Berti M, Borgatti L et al (2010) Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides 7:433–444. doi: 10.1007/s10346-010-0207-y CrossRefGoogle Scholar
  14. Chen HX, Zhang LM (2014) A physically-based distributed cell model for predicting regional rainfall-induced shallow slope failures. Eng Geol 176:79–92. doi: 10.1016/j.enggeo.2014.04.011 CrossRefGoogle Scholar
  15. Coe J, Michael J, Crovelli RA et al (2004) Probabilistic assessment of precipitation-triggered landslides using historical records of landslide occurrence, Seattle, Washington. Environ Eng Geosci X:103–122CrossRefGoogle Scholar
  16. Coltorti M, Nanni T (1987) La bassa valle del Fiume Esino: geomorfologia, idrogeologia e neotettonica. Boll della Soc Geol Ital 106:35–51 (in Italian)Google Scholar
  17. Cotecchia V (2006) The Second Hans Cloos Lecture. Experience drawn from the great Ancona landslide of 1982. Bull Eng Geol Environ 65:1–41. doi: 10.1007/s10064-005-0024-z CrossRefGoogle Scholar
  18. Crescenti U, Favali P, Rainone M, et al. (2000) About landslide risk evaluation: the example of Numana cliff (Central Italy). In: GeoEng2000: an International Conference on Geotechnical & Geological Engineering, Melbourne, Australia, 19–24 November 2000Google Scholar
  19. Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazards Earth Syst Sci 3:81–93. doi: 10.5194/nhess-3-81-2003 CrossRefGoogle Scholar
  20. Dapporto S, Rinaldi M, Casagli N (2001) Failure mechanisms and pore water pressure conditions: analysis of a riverbank along the Arno River (Central Italy). Eng Geol 61:221–242. doi: 10.1016/S0013-7952(01)00026-6 CrossRefGoogle Scholar
  21. DeRose R, Trustrum N, Blaschke P (1991) Geomorphic change implied by regolith—slope relationships on steepland hillslopes, Taranaki, New Zealand. Catena 18:489–514CrossRefGoogle Scholar
  22. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874. doi: 10.1016/j.patrec.2005.10.010 CrossRefGoogle Scholar
  23. Folchi Vici D’Arcevia C, Nanni T, Palpacelli S, et al. (2008) Schema Idrogeologico della Regione Marche, Foglio Nord, Scala 1:100.000. Regione Marche – Servizio Ambiente e Paesaggio, AnconaGoogle Scholar
  24. Gardner W (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85:228–232. doi: 10.1097/00010694-195804000-00006 CrossRefGoogle Scholar
  25. Gentili B, Dramis F (eds) (1997) Geomorphology and quaternary evolution of Central Italy—guide for the excursion. Suppl Geogr Fis Dinam Quat 3:79–103Google Scholar
  26. Godt JW, Baum RL, Chleborad AF (2006) Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surf Process Landforms 31:97–110. doi: 10.1002/esp.1237 CrossRefGoogle Scholar
  27. Guzzetti F, Peruccacci S, Rossi M (2005) Definition of critical thresholds for different scenarios. RISK-advanced weather forecast system to advise on risk events and management. IRPI CNR, PerugiaGoogle Scholar
  28. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. doi: 10.1007/s10346-007-0112-1 CrossRefGoogle Scholar
  29. Guzzetti F, Salvati P, Rossi M, Bianchi C (2013) Rischio geo-idrologico per la popolazione in Italia. In: Atti dei Convegni Lincei n. 270. Roma, 23 March 2012 (in Italian)Google Scholar
  30. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910. doi: 10.1029/2000WR900090 CrossRefGoogle Scholar
  31. Luzi L, Pergalani F (1996) Applications of statistical and GIS techniques to slope instability zonation (1:50.000 Fabriano geological map sheet). Soil Dyn Earthq Eng 15:83–94. doi: 10.1016/0267-7261(95)00031-3 CrossRefGoogle Scholar
  32. Marche Region – Statistical Information System (2008) Demografia—Marche Popolazione: Anni 2002–2007 ( (in Italian)
  33. Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153. doi: 10.1029/93WR02979 CrossRefGoogle Scholar
  34. Montrasio L, Valentino R, Losi GL (2011) Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale. Nat Hazards Earth Syst Sci 11:1927–1947. doi: 10.5194/nhess-11-1927-2011 CrossRefGoogle Scholar
  35. Principi M, Bettucci C, Carotti A (2007) Analisi del dissesto da frana nelle Marche. In: Rapporto sulle frane in Italia. Il Progetto IFFI – Metodologia, risultati e rapporti regionali. APAT - Dipartimento Difesa del Suolo, Servizio Geologico d’Italia, Roma, pp 425–444 (in Italian)Google Scholar
  36. Raia S, Alvioli M, Rossi M et al (2014) Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geosci Model Dev 7:495–514. doi: 10.5194/gmd-7-495-2014 CrossRefGoogle Scholar
  37. Richards LA (1931) Capillary conduction of liquids through porous mediums. J Appl Phys 1:318–333. doi: 10.1063/1.1745010 Google Scholar
  38. Rinaldi M, Casagli N (1999) Stability of streambanks formed in partially saturated soils and effects of negative pore water pressures: the Sieve River (Italy). Geomorphology 26:253–277. doi: 10.1016/S0169-555X(98)00069-5 CrossRefGoogle Scholar
  39. Rinaldi M, Casagli N, Dapporto S, Gargini A (2004) Monitoring and modelling of pore water pressure changes and riverbank stability during flow events. Earth Surf Process Landforms 29:237–254. doi: 10.1002/esp.1042 CrossRefGoogle Scholar
  40. Salciarini D, Godt JW, Savage WZ et al (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides 3:181–194. doi: 10.1007/s10346-006-0037-0 CrossRefGoogle Scholar
  41. Savage WZ, Godt JW, Baum RL (2003) A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration. In: Proceedings of 3rd international conference on debris flow hazards mitigation: mechanics, prediction, and assessment, Davos, Switzerland, 10–12 September 2003, pp 179–187Google Scholar
  42. Savage WZ, Godt JW, Baum RL (2004) Modeling time-dependent slope stability. In: Proceedings of 9th international symposium on landslides, Rio de Janeiro, Brazil, 28 June–2 July 2004, pp 23–38Google Scholar
  43. Simoni A, Berti M, Generali M et al (2004) Preliminary result from pore pressure monitoring on an unstable clay slope. Eng Geol 73:117–128. doi: 10.1016/j.enggeo.2003.12.004 CrossRefGoogle Scholar
  44. Soil Survey Division Staff (1993) Soil survey manual. United States Department of Agriculture. pp. 63–65. Retrieved 30 August 2014Google Scholar
  45. Srivastava R, Yeh TCJ (1991) Analytical solutions for one dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour Res 27:753–762. doi: 10.1029/90WR02772 CrossRefGoogle Scholar
  46. Staley DM, Kean JW, Cannon SH et al (2013) Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides 10:547–562. doi: 10.1007/s10346-012-0341-9 CrossRefGoogle Scholar
  47. Taylor DW (1948) Fundamentals of soil mechanics. Soil Sci 66:700. doi: 10.1097/00010694-194808000-00008 CrossRefGoogle Scholar
  48. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New YorkCrossRefGoogle Scholar
  49. Tofani V, Dapporto S, Vannocci P, Casagli N (2006) Infiltration, seepage and slope instability mechanisms during the 20–21 November 2000 rainstorm in Tuscany, Central Italy. Nat Hazards Earth Syst Sci 6:1025–1033. doi: 10.5194/nhess-6-1025-2006 CrossRefGoogle Scholar
  50. Vanapalli S, Fredlund D (2000) Comparison of different procedures to predict unsaturated soil shear strength. In: Shackleford C, Houston SL, Chang N-Y (eds) Advances in unsaturated geotechnics, Denver, Colorado, 3 – August 2000. Geotechnical Special Publication 99. ASCE, pp 195–209Google Scholar
  51. Vennari C, Gariano SL, Antronico L et al (2014) Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat Hazards Earth Syst Sci 14:317–330. doi: 10.5194/nhess-14-317-2014 CrossRefGoogle Scholar
  52. Wieczorek G (1996) Landslide triggering mechanisms. In: Turner A, Schuster R (eds) Landslides, Investigation and Mitigation. Transportation Research Board, Special Report, vol 247. National Academy Press, Washington, DC, pp 76–90Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Eleonora Gioia
    • 1
  • Gabriella Speranza
    • 2
  • Maurizio Ferretti
    • 2
  • Jonathan W. Godt
    • 3
  • Rex L. Baum
    • 3
  • Fausto Marincioni
    • 1
    Email author
  1. 1.Department of Life and Environmental SciencesUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Functional Center for Civil Protection of the Marche RegionAnconaItaly
  3. 3.Geologic Hazards Science Center, U.S. Geological SurveyDenverUSA

Personalised recommendations