, Volume 12, Issue 6, pp 1215–1226 | Cite as

Global research trends in landslides during 1991–2014: a bibliometric analysis

  • Xueling Wu
  • Xueye Chen
  • F. Benjamin Zhan
  • Song HongEmail author
Technical Note


A bibliometric analysis was conducted to evaluate landslide research from different perspectives during the period 1991–2014 based on the Science Citation Index-Expanded and Social Sciences Citation Index databases. Based on a sample of 10,567 articles that were related to landslides, the bibliometric analysis revealed the scientific outputs, science categories, source titles, global geographical distribution of the authors, productive authors, international collaborations, institutions, and temporal evolution of keyword frequencies. Landslide-related research has undergone notable growth during the past two decades. Multidisciplinary Geosciences, Geological Engineering, and Water Resources were the three major science categories, and Geomorphology was the most active journal during the surveyed period. The major author clusters and research regions are located in North America, Western Europe, and East Asia. The USA was a leading contributor to global landslide research, with the most independent and collaborative articles, and its dominance was also confirmed in the national/regional collaboration network. The Chinese Academy of Sciences, US Geological Survey, and Italian National Research Council were the three major contributing institutions. Guzzetti F from the Italian National Research Council was the most productive author, with the most high-quality articles. A keyword analysis found that landslide susceptibility assessment, rainfall- and earthquake-induced landslide stability, and effective research technologies and methods were consistent topics that attracted the most attention during the study period. Several keywords, such as “landslide susceptibility”, “earthquake”, “GIS”, “remote sensing”, and “logistic regression”, received dramatically increased attention during the study period, possibly signalling future research trends.


Landslides Bibliometrics Research trends Collaboration network Author keywords 



This study is jointly supported by the NSFC (41271455), the Open Fund of the Key Laboratory of Urban Land Resources Monitoring and Simulation, the Ministry of Land and Resources (KF-2015-01-006), and the Open Research Fund of the State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing (13S01), the State Key Laboratory of Resources and Environmental Information System, and the Changjiang Soil and Water Conservation Monitoring Centre, WRC, China.


  1. Althuwaynee OF, Pradhan B, Park HJ, Lee JH (2014) A novel ensemble decision tree-based chi-squared automatic interaction detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 11(6):1063–1078. doi: 10.1007/s10346-014-0466-0 CrossRefGoogle Scholar
  2. Antolini F, Barla M (2015) Combining finite-discrete numerical modelling and radar interferometry for rock landslide early warning systems. In: Lollino G, Giordan D, Thuro K, Carranza-Torres C, Wu F, Marinos P, Delgado C (eds) Engineering geology for society and territory 6. Springer International Publishing, Switzerland, pp 705–708Google Scholar
  3. Barla M, Antolini F (2015) An integrated methodology for landslides’ early warning systems. Landslides. doi: 10.1007/s10346-015-0563-8 Google Scholar
  4. Bois T, Tric E, Lebourg T (2014) Influence of inherited topography on gravitational slope failure: three-dimensional numerical modelling of the La Clapière slope, Alpes—Maritimes, France. Terra Nov. 26(5):354–362. doi: 10.1111/ter.12105
  5. Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geogr Ann A 62(1/2):23–27. doi: 10.2307/520449 CrossRefGoogle Scholar
  6. Campbell D, Côté G, Grant J, Knapp M, Mehta A (2015) Comparative performance of adult social care research, 1996–2011: a bibliometric assessment. Br J Soc Work. doi: 10.1093/bjsw/bcv022 Google Scholar
  7. Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7(3):291–301. doi: 10.1007/s10346-010-0215-y CrossRefGoogle Scholar
  8. Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102(3):164–177. doi: 10.1016/j.enggeo.2008.03.016 CrossRefGoogle Scholar
  9. Chen C (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 57(3):359–377. doi: 10.1002/asi.20317 CrossRefGoogle Scholar
  10. Chigira M, Wu X, Inokuchi T, Wang G (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 118(3):225–238. doi: 10.1016/j.geomorph.2010.01.003 CrossRefGoogle Scholar
  11. Chiu WT, Ho YS (2007) Bibliometric analysis of tsunami research. Scientometrics 73(1):3–17. doi: 10.1007/s11192-005-1523-1 CrossRefGoogle Scholar
  12. Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263. doi: 10.1007/s10064-013-0538-8 Google Scholar
  13. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation, special report 247. Transportation Research Board, Washington, DC, pp 36–75Google Scholar
  14. De Bakker FG, Groenewegen P, Den Hond F (2005) A bibliometric analysis of 30 years of research and theory on corporate social responsibility and corporate social performance. Bus Soc 44(3):283–317. doi: 10.1177/0007650305278086 CrossRefGoogle Scholar
  15. Fahimnia B, Sarkis J, Davarzani H (2015) Green supply chain management: a review and bibliometric analysis. Int J Prod Econ 162:101–114. doi: 10.1016/j.ijpe.2015.01.003 CrossRefGoogle Scholar
  16. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102(3):85–98. doi: 10.1016/j.enggeo.2008.03.022 CrossRefGoogle Scholar
  17. Gokceoglu C, Sezer E (2009) A statistical assessment on international landslide literature (1945–2008). Landslides 6(4):345–351. doi: 10.1007/s10346-009-0166-3 CrossRefGoogle Scholar
  18. Grossi F, Belvedere O, Rosso R (2003) Geography of clinical cancer research publications from 1995 to 1999. Eur J Cancer 39(1):106–111. doi: 10.1016/S0959-8049(02)00239-3 CrossRefGoogle Scholar
  19. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31(1):181–216. doi: 10.1016/S0169-555X(99)00078-1 CrossRefGoogle Scholar
  20. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112(1):42–66. doi: 10.1016/j.earscirev.2012.02.001 CrossRefGoogle Scholar
  21. Ho YS, Satoh H, Lin SY (2010) Japanese lung cancer research trends and performance in science citation index. Intern Med 49(20):2219–2228. doi: 10.2169/internalmedicine.49.3687 CrossRefGoogle Scholar
  22. Lampe HW, Hilgers D (2015) Trajectories of efficiency measurement: a bibliometric analysis of DEA and SFA. Eur J Oper Res 240(1):1–21. doi: 10.1016/j.ejor.2014.04.041 CrossRefGoogle Scholar
  23. Liu XJ, Zhan FB, Hong S, Niu BB, Liu YL (2012) A bibliometric study of earthquake research: 1900–2010. Scientometrics 92(3):747–765. doi: 10.1007/s11192-011-0599-z CrossRefGoogle Scholar
  24. Nandi A, Shakoor A (2008) Application of logistic regression model for slope instability prediction in Cuyahoga river watershed, Ohio, USA. Georisk 2(1):16–27. doi: 10.1080/17499510701842221 Google Scholar
  25. Nederhof AJ (2006) Bibliometric monitoring of research performance in the social sciences and the humanities: a review. Scientometrics 66(1):81–100. doi: 10.1007/s11192-006-0007-2 CrossRefGoogle Scholar
  26. Neri M, Milazzo D, Ugolini D, Milic M, Campolongo A, Pasqualetti P, Bonassi S (2015) Worldwide interest in the comet assay: a bibliometric study. Mutagenesis 30(1):155–163. doi: 10.1093/mutage/geu061 CrossRefGoogle Scholar
  27. Niu R, Wu X, Yao D, Peng L, Ai L, Peng J (2014) Susceptibility assessment of landslides triggered by the Lushan earthquake, April 20, 2013, China. IEEE J-Stars 7(9):3979–3992. doi: 10.1109/JSTARS.2014.2308553 Google Scholar
  28. Notti D, Meisina C, Zucca F, Balduzzi G, Colombo A (2015) Map numerical modelling of landslides using data from different monitoring systems: the example of Rosone (Western Alps). In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory 2. Springer International Publishing, Switzerland, pp 1455–1459Google Scholar
  29. Palladino MR, Turconi L, Luino F, Brunetti MT, Peruccacci S, Guzzetti F (2015) Influence of geological, morphological and climatic factors in the initiation of shallow landslides in north western Italy. In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory 2. Springer International Publishing, Switzerland, pp 1389–1392Google Scholar
  30. Petschko H, Brenning A, Bell R, Goetz J, Glade T (2014) Assessing the quality of landslide susceptibility maps—case study lower Austria. Nat Hazards Earth Syst 14(1):95–118. doi: 10.5194/nhessd-1-1001-2013 CrossRefGoogle Scholar
  31. Pradhan B (2010) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45(10):1244–1256. doi: 10.1016/j.asr.2010.01.006 CrossRefGoogle Scholar
  32. Pritchard A (1969) Statistical bibliography or bibliometrics? J Doc 25(4):348–349Google Scholar
  33. Regmi NR, Giardino JR, McDonald EV, Vitek JD (2014) A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides 11(2):247–262. doi: 10.1007/s10346-012-0380-2 CrossRefGoogle Scholar
  34. Ren F, Wu X, Zhang K, Niu R (2015) Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the three gorges, China. Environ Earth Sci 73(8):4791–4804. doi: 10.1007/s12665-014-3764-x CrossRefGoogle Scholar
  35. Salvati L, Carlucci M (2015) Towards sustainability in agro-forest systems? Grazing intensity, soil degradation and the socioeconomic profile of rural communities in Italy. Ecol Econ 112:1–13. doi: 10.1016/j.ecolecon.2015.02.001 CrossRefGoogle Scholar
  36. Sassa K, Tsuchiya S, Fukuoka H, Mikos M, Doan L (2015) Landslides: review of achievements in the second 5-year period (2009–2013). Landslides 12(2):213–223. doi: 10.1007/s10346-015-0567-4 CrossRefGoogle Scholar
  37. Sousa RL, Karam K, Einstein HH (2014) Exploration analysis for landslide risk management. Georisk Assess Manag Risk Eng Syst Geohazard 8(3):155–170. doi: 10.1080/17499518.2014.958174 CrossRefGoogle Scholar
  38. Sun J, Wang MH, Ho YS (2012) A historical review and bibliometric analysis of research on estuary pollution. Mar Pollut Bull 64(1):3–21. doi: 10.1016/j.marpolbul.2011.10.034 CrossRefGoogle Scholar
  39. Thiebes B, Bell R, Glade T, Jäger S, Mayer J, Anderson M, Holcombe L (2014) Integration of a limit-equilibrium model into a landslide early warning system. Landslides 11(5):859–875. doi: 10.1007/s10346-013-0416-2 CrossRefGoogle Scholar
  40. Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS (2014) Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in west Sumatera province, Indonesia. Catena 118:124–135. doi: 10.1016/j.catena.2014.02.005 CrossRefGoogle Scholar
  41. van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184. doi: 10.1007/s10064-005-0023-0 CrossRefGoogle Scholar
  42. van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3):112–131. doi: 10.1016/j.enggeo.2008.03.010 CrossRefGoogle Scholar
  43. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. In: Natural hazards 3. United Nations Educational, Scientific and Cultural Organization, Paris 63Google Scholar
  44. Vranken L, Vantilt G, Van Den Eeckhaut M, Vandekerckhove L, Poesen J (2014) Landslide risk assessment in a densely populated hilly area. Landslides. doi: 10.1007/s10346-014-0506-9 Google Scholar
  45. Wu X, Niu R, Ren F, Peng L (2013) Landslide susceptibility mapping using rough sets and back-propagation neural networks in the three gorges, China. Environ Earth Sci 70(3):1307–1318. doi: 10.1007/s12665-013-2217-2 CrossRefGoogle Scholar
  46. Wu X, Ren F, Niu R (2014) Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the three gorges of China. Environ Earth Sci 71(11):4725–4738. doi: 10.1007/s12665-013-2863-4 CrossRefGoogle Scholar
  47. Zakaria Z, Hirnawan F, Widayati S (2015) Rain and earthquake-induced landslides in west Java, Indonesia, case study in Subang area near the Baribis Fault, with implications for an early warning system. In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory 2. Springer International Publishing, Switzerland, pp 637–640Google Scholar
  48. Zyoud SH, Al-Jabi SW, Sweileh WM (2015) Worldwide research productivity of paracetamol (acetaminophen) poisoning: a bibliometric analysis (2003–2012). Hum Exp Toxicol 34(1):12–23. doi: 10.1177/0960327114531993 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xueling Wu
    • 1
    • 2
  • Xueye Chen
    • 2
  • F. Benjamin Zhan
    • 3
  • Song Hong
    • 4
    Email author
  1. 1.Institute of Geophysics and GeomaticsChina University of GeosciencesWuhanChina
  2. 2.Key Laboratory of Urban Land Resources Monitoring and SimulationMinistry of Land and ResourcesShenzhenChina
  3. 3.Texas Center for Geographic Information Science, Department of GeographyTexas State UniversitySan MarcosUSA
  4. 4.School of Resource and Environmental SciencesWuhan UniversityWuhanChina

Personalised recommendations