, Volume 13, Issue 2, pp 337–347 | Cite as

Total water content thresholds for shallow landslides, Outer Western Carpathians

  • Michal BílEmail author
  • Richard Andrášik
  • Pavel Zahradníček
  • Jan Kubeček
  • Jiří Sedoník
  • Petr Štěpánek
Original Paper


Shallow landslides are fairly frequent natural processes which emerge as a result of both rainfall and rapid snowmelt in the Flysch Belt of the Outer Western Carpathians. We estimated the total water content thresholds for the previously defined seven phases of increased landsliding which took place between 1939 and 2010 around the Napajedla meteorological station. The time series were reconstructed on the basis of data from surrounding stations. Rainfalls with the highest intensities (>1 mm/min) were removed from the set. Rainfall of such an intensity primarily causes overland flow and soil erosion and does not contribute to landslide threshold. The snow water equivalent was computed on the basis of the snow height, and possible errors were evaluated as interval estimations. An interval of 10 days before a landslide phase was selected for the total water content threshold. The resulting lower boundary (67.0 mm/10 days) and upper boundary (163.3 mm/10 days) thresholds of water infiltrated into soil during an event shall be part of the prepared online warning system in this area.


Landslides Threshold Snowmelt Time series Antecedent rainfall Outer Western Carpathians 



This paper was prepared with the help of a project undertaken by the Transport Research Centre (OP R&D for Innovation no. CZ.1.05/2.1.00/03.0064). Pavel Zahradníček was supported by the project “Hydrometeorological Extremes in Southern Moravia Derived from Documentary Evidence” (Czech Science Foundation, no. 13-19831S). Petr Štěpánek was supported by the project “Establishment of International Scientific Team Focused on Drought Research” (no. OP VKCZ.1.07/2.3.00/20.0248). We would further like to thank Jan Šikula from the Czech Geological Survey for the information about the overall number of landslides. We also highly appreciate the help and suggestion of the two anonymous reviewers. Any errors are solely the responsibility of the authors.


  1. Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265CrossRefGoogle Scholar
  2. Alexandersson A (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675CrossRefGoogle Scholar
  3. Baum RL, Godt JW (2010) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 7(3):259–272CrossRefGoogle Scholar
  4. Bíl M, Müller I (2008) The origin of shallow landslides in Moravia (Czech Republic) in the spring of 2006. Geomorphology 99:246–253CrossRefGoogle Scholar
  5. Bíl M, Krejčí O, Bílová M, Kubeček J, Sedoník J, Krejčí V (2014) A chronology of landsliding and its impacts on the village of Halenkovice, Outer Western Carpathians. Geologija 119(4):342–363Google Scholar
  6. Cannon SH, Ellen SD (1985) Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California. Calif Geol 38(12):267–272Google Scholar
  7. Corominas J (2000) Landslides and climate. Keynote lecture. In: Proceedings 8th International Symposium on Landslides, edited by: Bromhead, E., Dixon, N., and Ibsen, M. L., Cardiff: A.A. Balkema 4:1–33Google Scholar
  8. Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat river basin, Eastern Pyrenees, Spain. Geomorphology 30:79–93CrossRefGoogle Scholar
  9. Crosta GB and Frattini P (2001) Rainfall thresholds for triggering soil slips and debris flow, Proc. of the 2nd EGS Plinius Conference on Mediterranean Storms: Publication CNR GNDCI 2547:463–487Google Scholar
  10. Déqué M et al (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Climate Chang 81(Suppl. 1):53–70. doi: 10.007/s10584-006-9228-x
  11. Gil E, Dlugosz M (2006) Threshold values of rainfalls triggering selected deep-seated landslides in the Polish flysch Carpathians. Stud Geomorphol Carpatho-Balc XI:21–43Google Scholar
  12. Gil E, Starkel L (1979) Long-term extreme rainfalls and their role in the modelling of flysch slopes. Stud Geomorphol Carpatho-Balc 13:207–219Google Scholar
  13. Glade T, Crozier M, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model”. Pure Appl Geophys 157:1059–1079CrossRefGoogle Scholar
  14. Govi M, Sorzana PF (1980) Landslide susceptibility as a function of critical rainfall amount in Piedmont basin (North-Western Italy). Stud Geomorphol Carpatho-Balc 14:43–61Google Scholar
  15. Guzzetti F, Crosta G, Marchetti M, Reichenbach P (1992) Debris flows triggered by the July, 17 – 19, 1987 storm in the Valtellina Area (Northern Italy). Proc. of the VII International Congress Interpraevent 1992, Bern, vol. 2, pp. 193–204Google Scholar
  16. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98:239–267CrossRefGoogle Scholar
  17. Jonas T, Marty C, Magnusson J (2009) Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. J Hydrol 378:161–167CrossRefGoogle Scholar
  18. Kirchner K, Krejčí O, Máčka Z, Bíl M (2000) Slope deformations in the eastern Moravia, Vsetín District (Outer West Carpathians). Acta Univ Carol Geol 35:133–143Google Scholar
  19. Klimeš J, Blahůt J (2012) Landslide risk analysis and its application in regional planning: an example from the highlands of the Outer Western Carpathians, Czech Republic. Nat Hazards 64:1779–1803CrossRefGoogle Scholar
  20. Kopecký M (2000) Influence of climatic and hydrogeologic conditions on the origin of landslides in Slovakia. In: Rybář, Stemberk, Wagner (eds.): Landslides, A. A. Balkema Publishers. Lisse. ISBN 90 5809 393 X, 367–372Google Scholar
  21. Köppen W (1936) Das geographische System der Klimate, Handbuch der Klimatologie, herausgegeben von W. Köppen und R. Geiger, Bd. 1, Teil C, BerlinGoogle Scholar
  22. Krejčí O (2014) (Ed.): Geological map of the Czech Republic, Sheet Jablůnka 25–144, Czech Geological SurveyGoogle Scholar
  23. Krejčí O, Baroň I, Bíl M, Jurová Z, Bárta J, Hubatka F, Kašpárek M, Kirchner K, Stach J (2002) Some examples of deep seated landslides in the Flysch Belt of the Western Carpathians. In: Rybář, Stemberk, Wagner (eds.): Landslides, A. A. Balkema Publishers. Lisse. ISBN 90 5809 393 X, 373–380Google Scholar
  24. López-Moreno JI, Fassnacht SR, Heath JT, Musselman KN, Revuelto J, Latron J, Morán-Tejeda E, Jonas T (2013) Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Adv Water Resour 55:40–52CrossRefGoogle Scholar
  25. Maronna T, Yohai VJ (1978) A bivariate test for the detection of a systematic change in mean. J Am Stat Assoc 73:640–645CrossRefGoogle Scholar
  26. Mayer NK, Dyrrdal AV, Frauenfelder R, Etzelmuller B, Nadim F (2012) Hydrometeorological threshold conditions for debris flow initiation in Norway. Nat Hazards Earth Syst Sci 12(10):3059–3073CrossRefGoogle Scholar
  27. Osanai N, Shimizu T, Kuramoto K, Kojima S, Noro T (2010) Japanese early-warning for debris flows and slope failures using rainfall indices with radial basis function network. Landslides 7:325–338CrossRefGoogle Scholar
  28. Pánek T, Brázdil R, Klimeš J, Smolková V, Hhradecký J, Zahradníček P (2011) Rainfall-induced landslide event of May 2010 in the eastern part of the Czech Republic. Landslides 8(4):507–516CrossRefGoogle Scholar
  29. Raczkowski W, Mrozek T (2002) Activating of landsliding in the Polish Flysch Carpathians by the End of the 20th century. Stud Geomorphol Carpatho-Balc 36:91–111Google Scholar
  30. Raška P, Klimeš J, Dubišar J (in print) Using local archive sources to reconstruct historical landslide occurrence in selected urban regions of the Czech Republic: Examples from regions with different historical development. Land Degrad. Develop. doi: 10.1002/ldr.2192Google Scholar
  31. Špůrek M (1967) Historická analýza působení klimatického sesuvného faktoru v Českém masivu. Dissertation thesis. Manuscript, Archive of the Czech Geological Survey – GeofondGoogle Scholar
  32. Stankoviansky M, Minár J, Barka I, Bonk R, Trizna M (2010) Investigating muddy floods in Slovakia. Land Degrad Dev 21:336–345CrossRefGoogle Scholar
  33. Starkel L (2002) Change in the frequency of extreme events as the indicator of climatic change in the Holocene (in fluvial systems). Quat Int 91:25–32CrossRefGoogle Scholar
  34. Štěpánek P, Zahradníček P, Brázdil R, Tolasz R (2011) Metodologie kontroly a homogenizace časových řad v klimatologii. ČHMÚ PrahaGoogle Scholar
  35. Štěpánek P, Zahradníček P, Huth R (2011) Interpolation techniques used for data quality control and calculation of technical series: an example of Central European daily time series. Idöjárás 115(1–2):87–98Google Scholar
  36. Štepánek P, Zahradnícek P, Farda A (2013) Experiences with homogenization of daily records of various meteorological elements in the Czech Republic. Idojaros 117:123–141Google Scholar
  37. Sturm M, Taras B, Liston GE, Derksen C, Jonas T, Lea J (2010) Estimating snow water equivalent using snow depth data and climate classes. J Hydrometeorol 11:1380–1394CrossRefGoogle Scholar
  38. Wieczorek GF and Glade T (2005) Climatic factors influencing occurrence of debris flows, in “Debris flow hazards and related phenomena”, edited by: Jakob M and Hungr O Berlin Heidelberg, Springer, 325–362Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Michal Bíl
    • 1
    Email author
  • Richard Andrášik
    • 1
  • Pavel Zahradníček
    • 2
    • 3
  • Jan Kubeček
    • 1
  • Jiří Sedoník
    • 1
  • Petr Štěpánek
    • 2
    • 3
  1. 1.CDV Transport Research CentreBrnoCzech Republic
  2. 2.Czech Hydrometeorological InstituteBrnoCzech Republic
  3. 3.Czech Globe–Global Change Research Centre AS, CRBrnoCzech Republic

Personalised recommendations