, Volume 12, Issue 6, pp 1035–1050 | Cite as

Landslide detection and inventory by integrating LiDAR data in a GIS environment

  • J. A. Palenzuela
  • M. Marsella
  • C. Nardinocchi
  • J. L. Pérez
  • T. Fernández
  • J. Chacón
  • C. IrigarayEmail author
Original Paper


In this work, a simple methodology is presented for processing high-resolution topographical data over wide areas. It is based on digital elevation model of differences (DEMoD) among high-resolution digital models (HRDEM) produced from light-detection and ranging (LiDAR) data. Because these qualitative approaches based on HRDEMs can be affected by errors related to misalignment between different passes of the airborne sensor and errors in classifying points, a simplified strategy was undertaken for their semi-automatic correction and supervision for analyzing geomorphological changes. Besides, it became possible to detect, delineate, and classify a total of 47 natural landslides and 50 slope-cut failures over an area of 234 km2 on the basis of the analysis of the LiDAR products (DEMs and DEMoD) and the orthophotography imagery inspection integrated in a geographical information system (GIS). Most of the displacements detected were probably generated during the winter of 2009–2010 when a new record of cumulative rainfall was reached. The displacement rate of these movements cannot be known with precision, but the minimum velocity that can be obtained is 0.3 m/year regarding the period between the two data acquisitions carried out in November 2008 and July 2010. On the other hand, a comparison was made of the existing susceptibility maps with respect to this new inventory, which indicated greater landslide frequency in areas of moderate susceptibility levels. The influence of treating inventories at different temporal scales is discussed.


LiDAR data GIS DEMoD Betic Cordillera Spain 



This research was supported by projects CGL2005-03332 and CGL2008-04854 funded by the Ministry of Science and Education of Spain, and Excellence Project P06-RNM-02125, funded by the Regional Government. It was developed in the RNM121 and TEP213 Research Groups funded by the Andalusian Research Plan.


  1. AEMET (2010) Resumen anual climatológico 2010. Agencia Estatal de Meteorología.
  2. Ardizzone F, Cardinali M, Galli M, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Nat Hazards Earth Syst Sci 7:637–650CrossRefGoogle Scholar
  3. Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens 33:111–118Google Scholar
  4. Baum RL, Coe JA, Godt JW, Harp EL, Reid ME, Savage WZ, Schulz WH, Brien DL, Chleborad AF, McKenna JP, Michael JA (2005) Regional landslide-hazard assessment for Seattle, Washington, USA. Landslides 2:266–279CrossRefGoogle Scholar
  5. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256CrossRefGoogle Scholar
  6. BOJA (2007) Red de Información Ambiental de Andalucía (REDIAM). Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andlucía. Ley 7/2007, de 9 de julio, de Gestión Integrada de la Calidad Ambiental. Boletín Oficial de la Junta de Andalucía, 143Google Scholar
  7. Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping, 4 th International Symposium on Landslides, Toronto, Canada, Vol. 1, pp 307–323Google Scholar
  8. Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazards 20:117–135CrossRefGoogle Scholar
  9. Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102:164–177CrossRefGoogle Scholar
  10. Cascini L, Bonnard C, Corominas J, Jibson R, Montero-Olarte J (2005) Landslide hazard and risk zoning for urban planning and development – state of the art report. In: Hungr, fell, couture, Eberhardt (eds) Landslide risk management. Taylor and Francis, London, pp 199–235Google Scholar
  11. Chacón J, Irigaray C, Fernandez T, El Hamdouni R (2006a) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65:341–411CrossRefGoogle Scholar
  12. Chacón J, Irigaray Fernández C, Fernández T, El Hamdouni R (2006b) Landslides in the main urban areas of the Granada province, Andalucia, Spain. IAEG 2006, NottinghamGoogle Scholar
  13. Chacón J, Irigaray C, El Hamdouni R, Jiménez-Perálvarez J (2010) Diachroneity of landslides. In: Williams AL, Pinches GM, Chin CY, McMorran TJ, Massey CI (eds) Geologically active. Taylor & Francis Group, CRC Press-Balkema Vol. 1, pp 999–1006Google Scholar
  14. Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263Google Scholar
  15. Cruden DM, Varnes DJ (1996) Landslide types and processes. Special report—National Research Council. Transp Res Board 247:36–75Google Scholar
  16. Daehne A, Corsini A (2013) Kinematics of active earthflows revealed by digital image correlation and DEM subtraction techniques applied to multi-temporal LiDAR data. Earth Surf Process Landf 38:640–654CrossRefGoogle Scholar
  17. Derron MH, Jaboyedoff M (2010) Preface to the special issue. In: LIDAR and DEM techniques for landslides monitoring and characterization. Nat Hazards Earth Syst Sci 10:1877–1879CrossRefGoogle Scholar
  18. Dewitte O, Jasselette JC, Cornet Y, Van Den Eeckhaut M, Collignon A, Poesen J, Demoulin A (2008) Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Eng Geol 99:11–22CrossRefGoogle Scholar
  19. DIPGRA/IGME (2007) Atlas de Riesgos Naturales en la Provincia de Granada. Diputación de Granada / Instituto Geológico de y Minero de España, Gráficas Chile, 190 pp. ISBN: 978-84-7807-438-9Google Scholar
  20. El Hamdouni R, Irigaray C, Fernández T, Chacón J, Keller EA (2008) Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 96:150–173CrossRefGoogle Scholar
  21. ESRI (2013) ArcGIS Desktop 10.0. Environmental Systems Research Institute, Inc (ESRI).
  22. Evans JS, Hudak AT (2007) A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments. IEEE Trans Geosci Remote Sens 45:1029–1038CrossRefGoogle Scholar
  23. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98CrossRefGoogle Scholar
  24. Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for the assessment of slope susceptibility and mapping by means of a GIS. Application to the Contraviesa area (Granade, Spain). Nat Hazards 30:297–308CrossRefGoogle Scholar
  25. Fernández T, Jiménez-Perálvarez JD, Fernández P, El Hamdouni R, Cardenal FJ, Delgado J, Irigaray C, Chacón J (2008) Automatic detection of landslide features with remote sensing techniques in the Betic Cordilleras (Granada, Southern Spain). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII. Part B8: 351–356. ISSN: 1682–1750Google Scholar
  26. Fernández P, Irigaray C, Jimenez J, El Hamdouni R, Crosetto M, Monserrat O, Chacon J (2009) First delimitation of areas affected by ground deformations in the Guadalfeo River Valley and Granada metropolitan area (Spain) using the DInSAR technique. Eng Geol 105:84–101CrossRefGoogle Scholar
  27. Fernández T, Pérez J, Delgado J, Cardenal F, Irigaray C, Chacón J (2011) Evolution of a diachronic landslide by comparison between different DEMs obtained from Digital Photogrammetry Techniques in Las Alpujarras (Granada, Southern Spain). Conference of Geoinformation for Disaster Management (GI4DM). Antalya, TurkeyGoogle Scholar
  28. Fernández T, Jiménez J, Delgado J, Cardenal J, Pérez JL, El Hamdouni R, Irigaray C, Chacón J et al (2013) Methodology for landslide susceptibility and hazard mapping using GIS and SDI. In: Zlatanova S (ed) Intelligent systems for crisis management, lecture notes in geoinformation and cartography. Springer-Verlag, Berlin. doi: 10.1007/978-3-642-33218-0_14 Google Scholar
  29. Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:268–289CrossRefGoogle Scholar
  30. Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2006) Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148CrossRefGoogle Scholar
  31. Gómez-Pugnaire MT, Galindo-Zaldívar J, Rubatto D, González-Lodeiro F, López Sánchez-Vizcaíno V, Jabaloy A (2004) A reinterpretation of the Nevado-Filábride and Alpujárride complexes (Betic Cordillera): field, petrography and U-Pb ages from orthogneisses (western Sierra Nevada, S Spain). Schweiz Miner Petrogr Mitt 84:303–322Google Scholar
  32. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66CrossRefGoogle Scholar
  33. Haneberg WC, Cole WF, Kasali G (2009) High-resolution lidar-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bull Eng Geol Environ 68:263–276CrossRefGoogle Scholar
  34. Hervás J, Barredo JI, Rosin PL, Pasuto A, Mantovani F, Silvano S (2003) Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphology 54:63–75CrossRefGoogle Scholar
  35. Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. Landslides. Proc. 5th symposium, Lausanne, 1988 1:3–35Google Scholar
  36. Ibsen ML, Brunsden D (1996) The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 15:241–258CrossRefGoogle Scholar
  37. InnovMetric (2014) PolyWorks. InnovMetric Software Inc.
  38. Irigaray C, Palenzuela JA (2013) Análisis de la actividad de movimientos de ladera mediante láser escáner terrestre en el suroeste de la Cordillera Bética (España). Rev Geol Apl Ing Ambient 31:53–67Google Scholar
  39. Irigaray C, Fernández T, El Hamdouni R, Chacón J (1999) Verification of landslide susceptibility mapping: a case study. Technical report. Earth Surf Process Landf 24:537–544CrossRefGoogle Scholar
  40. Irigaray C, Lamas F, El Hamdouni R, Fernandez T, Chacon J (2000) The importance of the precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat Hazards 21:65–81CrossRefGoogle Scholar
  41. Irigaray C, Fernández T, El Hamdouni R, Chacón J (2007) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Nat Hazards 41:61–79CrossRefGoogle Scholar
  42. Isenburg M (2013) LAStools - efficient tools for LiDAR processing. Version 130506.
  43. Jaboyedoff M, Oppikofer T, Abellán A, Derron M-H, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28CrossRefGoogle Scholar
  44. Jimenez-Peralvarez JD, Irigaray C, El Hamdouni R, Chacon J (2009) Building models for automatic landslide-susceptibility analysis, mapping and validation in ArcGIS. Nat Hazards 50:571–590CrossRefGoogle Scholar
  45. Jiménez-Perálvarez JD, Irigaray C, El Hamdouni R, Chacón J (2011) Landslide-susceptibility mapping in a semi-arid mountain environment: an example from the southern slopes of Sierra Nevada (Granada, Spain). Bull Eng Geol Environ 70:265–277CrossRefGoogle Scholar
  46. Kasai M, Ikeda M, Asahina T, Fujisawa K (2009) LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 113:57–69CrossRefGoogle Scholar
  47. Leica (2006) Leica Geosystems presents its Leica ALS50-II LIDAR System: higher accuracy with pulse rates up to 150 kHz.
  48. Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15:213–225CrossRefGoogle Scholar
  49. Marsella M, Proietti C, Sonnessa A, Coltelli M, Tommasi P, Bernardo E (2009) The evolution of the Sciara del Fuoco subaerial slope during the 2007 Stromboli eruption: relation between deformation processes and effusive activity. J Volcanol Geotherm Res 182:201–213CrossRefGoogle Scholar
  50. McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331–351CrossRefGoogle Scholar
  51. Meng X, Currit N, Zhao K (2010) Ground filtering algorithms for airborne LiDAR data: a review of critical issues. Remote Sens 2:833–860CrossRefGoogle Scholar
  52. Palenzuela JA, Irigaray C, Jiménez-Perálvarez JD, Chacón J (2013) Application of terrestrial laser scanner to the assessment of the evolution of diachronic landslides. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice vol. 2, 517–523. Springer, Berlin. ISBN 978-3-642-31445-2Google Scholar
  53. Prokešová R, Kardoš M, Medveďová A (2010) Landslide dynamics from high-resolution aerial photographs: a case study from the Western Carpathians, Slovakia. Geomorphology 115:90–101CrossRefGoogle Scholar
  54. Prokop A, Panholzer H (2009) Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Nat Hazards Earth Syst Sci 9:1921–1928CrossRefGoogle Scholar
  55. Roering JJ, Mackey BH, Marshall JA, Sweeney KE, Deligne NI, Booth AM, Handwerger AL, Cerovski-Darriau C (2013) You are HERE: connecting the dots with airborne lidar for geomorphic fieldwork. Geomorphology 200:172–183CrossRefGoogle Scholar
  56. Singhroy V, Molch K (2004) Characterizing and monitoring rockslides from SAR techniques. Adv Space Res 33:290–295CrossRefGoogle Scholar
  57. Soeters R, van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner S (ed) Landslides investigation and mitigation. TRB special report 247. National Academy Press, Washington D.C., pp 129–177Google Scholar
  58. Tarolli P, Sofia G, Dalla Fontana G (2012) Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Nat Hazards 61:65–83CrossRefGoogle Scholar
  59. Van Den Eeckhaut M, Hervás J (2012) State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139–140:545–558CrossRefGoogle Scholar
  60. van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—Why is it still so difficult? Bull Eng Geol Environ 65:167–184CrossRefGoogle Scholar
  61. van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131CrossRefGoogle Scholar
  62. Varnes DJ (1978) Slope movement types and processes. In: Schuster K (ed) Landslides: analysis and control, vol 176. TRB, National Research Council, Washington D.C,Vol.: Special Report, pp 11–33Google Scholar
  63. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice, Commision on landslides of IAEG, UNESCO, Paris. Natural Hazards, Vol 3Google Scholar
  64. Wang G, Joyce J, Phillips D, Shrestha R, Carter W (2013) Delineating and defining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LIDAR data. Landslides 10(4):503–513CrossRefGoogle Scholar
  65. Wieczorek GF (1983) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol 21:337–342Google Scholar
  66. Zhang K, Chen S-C, Whitman D, Shyu M-L, Yan J, Zhang C (2003) A progressive morphological filter for removing nonground measurements from airborne LIDAR data. Geosci Remote Sens IEEE Trans 41:872–882CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. A. Palenzuela
    • 1
  • M. Marsella
    • 2
  • C. Nardinocchi
    • 2
  • J. L. Pérez
    • 3
  • T. Fernández
    • 3
  • J. Chacón
    • 1
  • C. Irigaray
    • 1
    Email author
  1. 1.Department of Civil EngineeringUniversity of GranadaGranadaSpain
  2. 2.Dip. Ingegneria Civile, Edile, AmbientaleUniversità “La Sapienza”RomeItaly
  3. 3.Department of Cartographic, Geodetic and Photogrammetric EngineeringUniversity of JaénJaénSpain

Personalised recommendations